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SLOPE IS ADAPTIVE TO UNKNOWN SPARSITY AND
ASYMPTOTICALLY MINIMAX

BY WEIJIE SU1 AND EMMANUEL CANDÈS2

Stanford University

We consider high-dimensional sparse regression problems in which we
observe y = Xβ + z, where X is an n × p design matrix and z is an n-
dimensional vector of independent Gaussian errors, each with variance σ 2.
Our focus is on the recently introduced SLOPE estimator [Ann. Appl. Stat.
9 (2015) 1103–1140], which regularizes the least-squares estimates with the
rank-dependent penalty

∑
1≤i≤p λi |β̂|(i), where |β̂|(i) is the ith largest mag-

nitude of the fitted coefficients. Under Gaussian designs, where the entries
of X are i.i.d. N (0,1/n), we show that SLOPE, with weights λi just about
equal to σ ·�−1(1 − iq/(2p)) [�−1(α) is the αth quantile of a standard nor-
mal and q is a fixed number in (0,1)] achieves a squared error of estimation
obeying

sup
‖β‖0≤k

P
(‖β̂SLOPE − β‖2 > (1 + ε)2σ 2k log(p/k)

) −→ 0

as the dimension p increases to ∞, and where ε > 0 is an arbitrary small con-
stant. This holds under a weak assumption on the �0-sparsity level, namely,
k/p → 0 and (k logp)/n → 0, and is sharp in the sense that this is the best
possible error any estimator can achieve. A remarkable feature is that SLOPE
does not require any knowledge of the degree of sparsity, and yet automat-
ically adapts to yield optimal total squared errors over a wide range of �0-
sparsity classes. We are not aware of any other estimator with this property.

1. Introduction. Twenty years ago, Benjamini and Hochberg proposed the
false discovery rate (FDR) as a new measure of type-I error for multiple testing,
along with a procedure for controlling the FDR in the case of statistically inde-
pendent tests [8]. In words, the FDR is the expected value of the ratio between the
number of false rejections and the total number of rejections, with the convention
that this ratio vanishes in case no rejection is made. To describe the Benjamini–
Hochberg procedure, henceforth referred to as the BHq procedure, imagine we ob-
serve a p-dimensional vector y ∼ N (β, σ 2Ip) of independent statistics {yi}, and
wish to test which means βi are nonzero. Begin by ordering the observations as
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|y|(1) ≥ |y|(2) ≥ · · · ≥ |y|(p)—that is, from the most to the least significant—and
compute a data-dependent threshold given by

t̂FDR = |y|(R),

where R is the last time |y|(i)/σ exceeds a critical curve λBH
i : formally,

R � max
{
i : |y|(i)/σ ≥ λBH

i

}
with λBH

i = �−1(
1 − iq/(2p)

);(1.1)

throughout, 0 < q < 1 is a target FDR level and � is the cumulative distribution
function of a standard normal random variable. [The chance that a null statistic
z ∼ N (0,1) exceeds λBH

i is P(|z| ≥ λBH
i ) = q · i/p.] Then BHq rejects all those

hypotheses with |yi | ≥ t̂FDR and makes no rejection in the case where all the ob-
servations fall below the critical curve, that is, when the set {i : |y|(i)/σ ≥ λBH

i } is
empty. In short, the hypotheses corresponding to the R most significant statistics
are rejected. Letting V be the number of false rejections, Benjamini and Hochberg
proved that this procedure controls the FDR in the sense that

FDR = E

[
V

R ∨ 1

]
= qp0

p
≤ q,

where p0 = |{i : βi = 0}| is the total number of nulls. Unlike the Bonferroni pro-
cedure (see, e.g., [14]) where the threshold for significance is fixed in advance, a
very appealing feature of the BHq procedure is that the threshold is adaptive as it
depends upon the data y. Roughly speaking, this threshold is high when there are
few discoveries to be made and low when there are many.

Interestingly, the acceptance of the FDR as a valid error measure has been slow
coming, and we have learned that the FDR criterion initially met much resistance.
Among other things, researchers questioned whether the FDR is the right quantity
to control as opposed to more traditional measures such as the familywise error
rate (FWER), and even if it were, they asked whether among all FDR controlling
procedures, the BHq procedure is powerful enough. Today, we do not need to ar-
gue that this step-up procedure is a useful tool for addressing multiple comparison
problems, as both the FDR concept and this method have gained enormous pop-
ularity in certain fields of science; for instance, they have influenced the practice
of genomic research in a very concrete fashion. The point we wish to make is,
however, different: as we discuss next, if we look at the multiple testing problem
from a different point of view, namely, from that of estimation, then FDR becomes
in some sense the right notion to control, and naturally appears as a valid error
measure.

Consider estimating β from the same data y ∼ N (β, σ 2Ip) and suppose we
have reasons to believe that the vector of means is sparse in the sense that most of
the coordinates of β may be zero or close to zero, but have otherwise no idea about
the number of “significant” means. It is well known that under sparsity constraints,
thresholding rules can far outperform the maximum likelihood estimate (MLE).
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A key issue is thus how one should determine an appropriate threshold. Inspired
by the adaptivity of BHq, Abramovich and Benjamini [1] suggested estimating the
mean sequence by the following testimation procedure:3 use BHq to select which
coordinates are worth estimating via the MLE and which do not and can be set to
zero. Formally, set 0 < q < 1 and define the FDR estimate as

β̂i =
{

yi, |yi | ≥ t̂FDR,

0, otherwise.
(1.2)

The idea behind the FDR-thresholding procedure is to automatically adapt to the
unknown sparsity level of the sequence of means under study. Now a remarkably
insightful article [2] published ten years ago rigorously established that this way of
thinking is fundamentally correct in the following sense: if one chooses a constant
q ∈ (0,1/2], then the FDR estimate is asymptotically minimax over the class of
k-sparse signals as long as k is neither too small nor too large. More precisely, take
any β ∈ R

p with a number k of nonzero coordinates obeying log5 p ≤ k ≤ p1−δ

for any constant δ > 0. Then as p → ∞, it holds that

MSE = E‖β̂ − β‖2 ≤ (
1 + o(1)

)
2σ 2k log(p/k).(1.3)

It can be shown that the right-hand side is the asymptotic minimax risk over the
class of k-sparse signals ([2] provides other asymptotic minimax results for �p

balls) and, therefore, there is a sense in which the FDR estimate asymptotically
achieves the best possible mean-square error (MSE). This is remarkable because
the FDR estimate is not given any information about the sparsity level k and no
matter this value in the stated range, the estimate will be of high quality. To a
certain extent, the FDR criterion strikes the perfect balance between bias and vari-
ance. Pick a higher threshold/or a more conservative testing procedure and the
bias will increase resulting in a loss of minimaxity. Pick a lower threshold/or use
a more liberal procedure and the variance will increase causing a similar outcome.
Thus, we see that the FDR criterion provides a fundamentally correct answer to an
estimation problem with squared loss, which is admittedly far from being a pure
multiple testing problem.

For the sake of completeness, we emphasize that the FDR thresholding estimate
happens to be very close to penalized estimation procedures proposed earlier in the
literature, which seek to regularize the maximum likelihood by adding a penalty
term of the form

argmin
b

‖y − b‖2
2 + σ 2 Pen

(‖b‖0
)
,(1.4)

where Pen(k) = 2k log(p/k) see [35] and [13, 52] for related ideas. In fact, [2]
begins by considering the penalized MLE with

Pen(k) = ∑
i≤k

(
λBH

i

)2 = (
1 + o(1)

)
2k log(p/k),

3See [3] for the use of this word.
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which is different from the FDR thresholding estimate, and shown to enjoy asymp-
totic minimaxity under the restrictions on the sparsity levels listed above. In a sec-
ond step, [2] argues that the FDR thresholding estimate is sufficiently close to this
penalized MLE so that the estimation properties carry over.

1.1. SLOPE. Our aim in this paper is to extend the link between estimation
and testing by showing that a procedure originally aimed at controlling the FDR
in variable selection problems enjoys optimal estimation properties. We work with
a linear model, which is far more general than the orthogonal sequence model
discussed up until this point; here, we observe an n-dimensional response vector
obeying

y = Xβ + z,(1.5)

where X ∈ R
n×p is a design matrix, β ∈ R

p is a vector of regression coefficients
and z ∼ N (0, σ 2In) is an error term.

On the testing side, finding finite sample procedures that would test the p hy-
potheses Hj : βj = 0 while controlling the FDR—or other measures of type-I
errors—remains a challenging topic. When p ≤ n and the design X has full col-
umn rank, this is equivalent to testing a vector of means under arbitrary correlations
since the model is equivalent to β̂LS ∼ N (β, σ 2(X′X)−1) (β̂LS is the least-squares
estimate). Applying BHq procedure to the least-squares estimate (1) is not known
to control the FDR (the positive regression dependency [9] does not hold here),
and (2) suffers from high variability in false discovery proportions due to corre-
lations [15]. Having said this, we are aware of recent significant progress on this
problem including the development of the knockoff filter [5], which is a powerful
FDR controlling method working when p ≤ n, and other innovative ideas [31, 38,
42, 43] relying on assumptions, which may not always hold.

On the estimation side, there are many procedures available for fitting sparse
regression models and the most widely used is the Lasso [51]. When the design
is orthogonal, the Lasso simply applies the same soft-thresholding rule to all the
coordinates of the least-squares estimates. This is equivalent to comparing all the
p-values to a fixed threshold. In the spirit of the adaptive BHq procedure, [15]
proposed a new fitting strategy called SLOPE, a short-hand for Sorted L-One Pe-
nalized Estimation: fix a nonincreasing sequence λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 not all
vanishing; then SLOPE is the solution to

minimize
b

1

2
‖y − Xb‖2 + λ1|b|(1) + λ2|b|(2) + · · · + λp|b|(p),(1.6)

where |b|(1) ≥ |b|(2) ≥ · · · ≥ |b|(p) are the order statistics of |b1|, |b2|, . . . , |bp|.
The regularization is a sorted �1 norm, which penalizes coefficients whose estimate
is larger more heavily than those whose estimate is smaller. This reminds us of
the fact that in multiple testing procedures, larger values of the test statistics are
compared with higher thresholds. In particular, recall that BHq compares |y|(i)/σ
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with λBH
i = �−1(1−iq/2p)—the (1−iq/2p)th quantile of a standard normal (for

information, the sequence λBH shall play a crucial role in the rest of this paper).
SLOPE is a convex program and [15] demonstrates an efficient solution algorithm
(the computational cost of solving a SLOPE problem is roughly the same as that
of solving the Lasso).

To gain some insights about SLOPE, it is helpful to consider the orthogonal
case, which we can take to be the identity without loss of generality. When X = Ip ,
the SLOPE estimate is the solution to

proxλ(y)� argmin
b

1

2
‖y − b‖2 + λ1|b|(1) + · · · + λp|b|(p);(1.7)

in the literature on optimization, this solution is called the prox to the sorted �1
norm evaluated at y, hence the notation in the left-hand side. [In the case of a
general orthogonal design in which X′X = Ip , the SLOPE solution is proxλ(X

′y).]
Suppose the observations are nonnegative and already ordered, that is, y1 ≥ y2 ≥
· · · ≥ yp ≥ 0.4 Then by [15], Proposition 2.2, SLOPE can be recast as the solution
to

minimize
1

2
‖y − λ − b‖2 = 1

2

∑
i

(yi − λi − bi)
2

(1.8)
subject to b1 ≥ b2 ≥ · · · ≥ bp ≥ 0

so that it is equivalent to solving an isotonic regression problem with data y − λ.
Hence, methods like the pool adjacent violators algorithm (PAVA) [6, 41] are di-
rectly applicable. Further, two observations are in order: the first is that the fitted
values have the same signs and ranks as the original observations; for any pair
(i, j), yi ≥ yj implies that β̂i ≥ β̂j . The second is that the fitted values are as
close as possible to the shrunken observations yi − λi under the ordering con-
straint. Hence, SLOPE is a sort of soft-thresholding estimate in which the amount
of thresholding is data dependent and such that the original ordering is preserved.

To emphasize the similarities with the BHq procedure, assume that we work
with λi = σ ·λBH

i and that we use SLOPE as a multiple testing procedure rejecting
Hi : βi = 0 if and only if β̂i �= 0. Then this procedure rejects all the hypotheses the
BHq step-down procedure would reject, and accepts all those the step-up proce-
dure would accept. Under independence, that is, y ∼ N (β, σ 2Ip), SLOPE controls
the FDR [15], namely, FDR(SLOPE) ≤ qp0/p, where again p0 is the number of
nulls, that is, of vanishing means.

Figure 1 displays SLOPE estimates for two distinct data sets, with one set con-
taining many more stronger signals than the other. We see that SLOPE sets a lower

4For arbitrary data, the solution can be obtained as follows: let P be a permutation that sorts the
magnitudes |y| in a nonincreasing fashion. Then proxλ(y) = sgn(y) � P−1 proxλ(P|y|), where � is
componentwise multiplication. In words, we can replace the observations by their sorted magnitudes,
solve the problem and, finally, undo the ordering and restore the signs.
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FIG. 1. Illustrative examples of original observations and SLOPE estimates with the identity de-
sign. All observations below the threshold indicated by the dotted line are set to zero; this threshold
is data dependent.

threshold of significance when there is a larger number of strong signals. We can
also see that SLOPE tends to shrink less as observations decrease in magnitude. In
summary, SLOPE encourages sparsity just as the Lasso, but unlike the Lasso its
degree of penalization is adaptive to the unknown sparsity level.

1.2. Orthogonal designs. We now turn to estimation properties of SLOPE and
begin by considering orthogonal designs. Multiplying both sides of (1.5) by X′
gives the statistically equivalent Gaussian sequence model

y = β + z,

where z ∼ N (0, σ 2Ip). Estimating a sparse mean vector from Gaussian data is a
well-studied problem with a long line of contributions; see [10, 13, 20, 24, 34, 40]
for example. Among other things, we have already mentioned that the asymptotic
risk over sparse signals is known: consider a sequence of problems in which p →
∞ and k/p → 0, then

Rp(k) � inf
β̂

sup
‖β‖0≤k

E‖β̂ − β‖2 = (
1 + o(1)

)
2σ 2k log(p/k),

where the infimum is taken over all measurable estimators; see [25] and [40]. Fur-
thermore, both soft or hard-thresholding at the level of σ

√
2 log(p/k) are asymp-

totically minimax. Such estimates require knowledge of the sparsity level ahead of
time, which is not realistic. Our first result is that SLOPE also achieves asymptotic
minimaxity without this knowledge.

THEOREM 1.1. Let X be orthogonal and assume that p → ∞ with k/p → 0.
Fix 0 < q < 1. Then SLOPE with λi = σ · �−1(1 − iq/2p) = σ · λBH

i obeys

sup
‖β‖0≤k

E‖β̂SLOPE − β‖2 = (
1 + o(1)

)
2σ 2k log(p/k).(1.9)
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Hence, no matter how we select the parameter q controlling the FDR level in the
range (0,1), we get asymptotic minimaxity (in practice we would probably stick
to values of q in the range [0.05,0.30]). There are notable differences with the
result from [2] we discussed earlier. First, recall that to achieve minimaxity in that
work, the nominal FDR level needs to obey q ≤ 1/2 (the MSE is larger otherwise)
and the sparsity level is required to obey log5 p ≤ k ≤ p1−δ for a constant δ > 0,
that is, the signal cannot be too sparse nor too dense. The lower bound on sparsity
has been improved to log4.5 p [56]. In contrast, there are no restrictions of this
nature in Theorem 1.1; this has to do with the fact that SLOPE is a continuous
procedure whereas FDR thresholding is highly discontinuous; small perturbations
in the data can cause the FDR thresholding estimates to jump. This idea may also
be found in the recent work [39] in which the authors prove that some smooth-
thresholding procedures uniformly achieve asymptotic minimaxity under the same
assumptions as in Theorem 1.1. They also establish some optimality results for
these thresholding rules at a fixed β . Second, SLOPE effortlessly extends to linear
models while it is not clear how one would extend FDR thresholding ideas in a
computationally tractable fashion.

One can ask which vectors β achieve the equality in (1.9), and it is not very hard
to see that equality holds if the k nonzero entries of β are very large. Suppose for
simplicity that β1 � β2 � · · · � βk � 1 and that βk+1 = · · · = βp = 0. Spacing
the nonzero coefficients sufficiently far apart will insure that yj − λj , 1 ≤ j ≤ k,
is nonincreasing with high probability so that the SLOPE estimate is obtained by
rank-dependent soft-thresholding:

β̂SLOPE,j = yj − σλBH
j .

Informally, since the mean-square error is the sum of the squared bias and variance,
this gives

E(β̂SLOPE,j − βj )
2 ≈ σ 2 · ((

λBH
j

)2 + 1
)
.

Since
∑

1≤j≤k(λ
BH
j )2 = (1 + o(1))2k log(p/k),5 summing this approximation

over the first k coordinates gives

E

∑
1≤j≤k

(β̂SLOPE,j − βj )
2 ≈ σ 2 ·

(
k + ∑

1≤j≤k

(
λBH

j

)2
)

= (
1 + o(1)

)
2σ 2k log(p/k),

where the last inequality follows from the condition k/p → 0. Theorem 1.1 states
that in comparison, the p − k vanishing means contribute a negligible MSE.

5This relation follows from �−1(1 − c) = (1 + o(1))
√

2 log(1/c) when c ↘ 0 and applying Stir-
ling’s approximation.
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We pause here to observe that if one hopes SLOPE with weights λj to be mini-
max, then they will need to satisfy

k∑
j=1

λ2
j = (

1 + o(1)
)
2k log(p/k)

for all k in the stated range. Since λ2
j = ∑j

i=1 λ2
i − ∑j−1

i=1 λ2
i , we have that λ2

j

is roughly the derivative of f (x) = 2x log(p/x) at x = j yielding λ2
j ≈ f ′(j) =

2 logp − 2 log j − 2, or

λj ≈
√

2 log(p/j) ≈ �−1(1 − jq/2p).

As a remark, all our results (e.g., Theorems 1.1 and 1.2) continue to hold if we
replace λBH

j (q) with
√

2 log(p/j).
We speculate that Theorem 1.1—and to some extent Theorem 1.2 below—

extend to other loss functions. For instance, from the proofs of Theorem 1.1 we
believe that for r ≥ 1,

sup
‖β‖0≤k

E‖β̂SLOPE − β‖r
r = (

1 + o(1)
) · k · (

2σ 2 log(p/k)
)r/2

holds. Furthermore, examining the proof of Theorem 1.1 reveals that for all k not
necessarily obeying k/p → 0 (e.g., k = p/2),

sup‖β‖0≤k E‖β̂SLOPE − β‖2

Rp(k)
≤ C(q),

where C(q) is a positive numerical constant that only depends on q .

1.3. Random designs. We are interested in getting results for sparse regression
that would be just as sharp and precise as those presented in the orthogonal case.
In order to achieve this, we assume a tractable model in which X is a Gaussian ran-
dom design with Xij i.i.d. N (0,1/n) so that the columns of X have just about unit
norm. Random designs allow to analyze fine structures of the models of interest
with tools from random matrix theory and large deviation theory, and are very pop-
ular for analyzing regression methods in the statistics literature. An incomplete list
of works working with Gaussian designs would include [4, 7, 12, 18, 19, 28, 55].
On the one hand, Gaussian designs are amenable to analysis while on the other,
they capture some of the features one would encounter in real applications.

To avoid any ambiguity, the theorem below considers a sequence of problems
indexed by (kj , nj ,pj ), where the number of variables pj → ∞, kj /pj → 0 and
(kj logpj )/nj → 0. From now on, we shall omit the subscript.

THEOREM 1.2. Fix 0 < q < 1 and set λ = σ(1+ε)λBH(q) for some arbitrary
constant 0 < ε < 1. Suppose k/p → 0 and (k logp)/n → 0. Then

sup
‖β‖0≤k

P

(‖β̂SLOPE − β‖2

2σ 2k log(p/k)
> 1 + 3ε

)
−→ 0.(1.10)
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For information, it is known that under some regularity conditions on the design
[47, 54], the minimax risk is on the order of O(σ 2k log(p/k)), without a tight
matching in the lower and upper bounds. Against this, our main result states that
SLOPE, which does not use any information about the sparsity level, achieves a
squared loss bounded by (1 + o(1))2σ 2k log(p/k) with large probability. This is
the best any procedure can do as we show next.

THEOREM 1.3. Under the assumptions of Theorem 1.2, for any ε > 0, we
have

inf
β̂

sup
‖β‖0≤k

P

( ‖β̂ − β‖2

2σ 2k log(p/k)
> 1 − ε

)
−→ 1.

Similar results dealing with arbitrary designs can be found in the literature,
compare Theorem 1 in [57]. However, the notable difference is that our theorem
captures the exact constants in addition to the rate.

Taking Theorems 1.2 and 1.3 together demonstrate that in a probabilistic sense
2σ 2k log(p/k) is the fundamental limit for the squared loss and that SLOPE
achieves it. It is also likely that our methods would yield corresponding bounds
for the expected squared loss but this would involve technical issues having to do
with the bounding of the loss on rare events. This being said, Theorem 1.2 provides
a more accurate description of the squared error than a result in expectation since
it asserts that the error is at most 2σ 2k log(p/k) with high probability. The proof
of this fact presents several novel elements not found in the literature.

The condition (k logp)/n → 0 is natural and cannot be fundamentally sharp-
ened. To start with, our results imply that SLOPE perfectly recovers β in the limit
of vanishing noise. In the high-dimensional setting where p > n, this connects
with the literature on compressed sensing, which shows that in the noiseless case,
n ≥ 2(1+o(1))k log(p/k) Gaussian samples are necessary for perfect recovery by
�1 methods in the regime of interest [29, 30]. Our condition is a bit more stringent
but naturally so since we are dealing with noisy data.

We hope that it is clear that results for orthogonal designs do not imply results
for Gaussian designs because of (1) correlations between the columns of the design
and (2) the high dimensionality. Under an orthogonal design, when there is no
noise, one can recover β by just computing X′y. However, as discussed above it is
far less clear how one should do this in the high-dimensional regime when p � n.
As an aside, with noise it would be foolish to find β̂ via proxλ(X

′y); that is, by
applying X′ and then pretending that we are dealing with an orthogonal design.
Such estimates turn out to have unbounded risks.

We remark that a preprint [33] considers statistical properties of a generalization
of OSCAR [17] that coincides with SLOPE. The findings and results are very
different from those presented here; for instance, the selection of optimal weights
λi is not discussed.
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Finally, to see our main results under a slightly different light, suppose we get a
new sample (x∗, y∗), independent from the “training set” (X,y), obeying the linear
model y∗ = 〈x∗,β〉+σz∗ with x ∼ N (0, n−1Ip) and z∗ ∼ N (0, σ 2). Then for any
estimate β̂ , the prediction ŷ = 〈x∗, β̂〉 obeys

E
(
y∗ − ŷ

)2 = n−1
E‖β − β̂‖2 + σ 2,

so that, in some sense, SLOPE with BH weights actually yields the best possible
prediction.

1.4. Back to multiple testing. Although our emphasis is on estimation, we
would nevertheless like to briefly return to the multiple testing viewpoint. In [15,
16], a series of experiments demonstrated empirical FDR control whenever β is
sufficiently sparse. While this paper does not go as far as proving that SLOPE
controls the FDR in our Gaussian setting, the ideas underlying the proof of Theo-
rem 1.2 have some implications for FDR control. Our discussion in this section is
less formal.

Suppose we wish to keep the false discovery proportion (FDP) FDP = V/(R ∨
1) ≤ q . Since the number of true discoveries R−V is at most k, the false discovery
number V = {i : βi = 0 and β̂SLOPE,i �= 0} must obey

V ≤ q

1 − q
k.(1.11)

Interestingly, an intermediate result of the proof of Theorem 1.2 implies that (1.11)
is satisfied with probability tending to one if k is sufficiently large and q is replaced
by (1+o(1))q . This is shown in Lemma 4.4. Another consequence of our analysis
is that if the nonzero regression coefficients are larger than 1.1σλBH

1 (q) (techni-
cally, we can replace 1.1 with any fixed number greater than one), then the true
positive proportion (the ratio between the number of true discoveries and k) ap-
proaches one in probability. In this setup, we thus have FDR control in the sense
that

FDRSLOPE ≤ (
1 + o(1)

)
q.

Figure 2 demonstrates empirical FDR control at the target level q = 0.1. Over
500 replicates, the averaged FDR is 0.09, and the averaged false discovery number
V is 9.4, as compared with 11.1, the upper bound in (1.11). We emphasize that [15,
16] also provide strong evidence that FDR is also controlled for moderate signals.

Since our paper proves that SLOPE does not make a large number of false dis-
coveries, the support of β̂SLOPE is of small size, and thus we see that ‖X(β̂SLOPE −
β)‖2 is very nearly equal to ‖β̂SLOPE − β‖2 since skinny Gaussian matrices are
near isometries. Therefore, we can carry our results over to the estimation of the
mean vector Xβ .
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FIG. 2. Gaussian design with (n,p) = (8,000,10,000) and σ = 1. There are k = 100 nonzero
coefficients with amplitudes 10

√
2 logp. Here, the nominal level is q = 0.1 and λ = 1.1λBH(0.1).

COROLLARY 1.4. Under the assumptions of Theorem 1.2,

sup
‖β‖0≤k

P

(‖Xβ̂SLOPE − Xβ‖2

2σ 2k log(p/k)
> 1 + 3ε

)
−→ 0.

As before, there are matching lower bounds: for these, it suffices to restrict
attention to estimates of the form μ̂ = Xβ̂ since projecting any estimator μ̂ onto
the column space of X never increases the loss.

COROLLARY 1.5. Assume k/p → 0 and p = O(n). Then

inf
β̂

sup
‖β‖0≤k

P

( ‖Xβ̂ − Xβ‖2

2σ 2k log(p/k)
> 1 − ε

)
−→ 1.

Again, SLOPE is optimal for estimating the mean response, and achieves an
estimation error which is the same as that holding for the regression coefficients
themselves.

1.5. Organization and notation. In the rest of the paper, we briefly explore
possible alternatives to SLOPE in Section 2. Section 3 concerns the estimation
properties of SLOPE under orthogonal designs and proves Theorem 1.1. We then
turn to study SLOPE under Gaussian random designs in Section 4, where both
Theorem 1.2 and Corollary 1.4 are proved. Last, we prove corresponding lower
bounds in Section 5, including Theorem 1.3. Corollary 1.5 and auxiliary results
are proved in the supplementary materials [50].

Recall that p,n, k are positive integers with p → ∞, but not necessarily so
for k. We use S for the complement of S. For any vector a, define the support of
a as supp(a) � {i : ai �= 0}. A bold-faced λ denotes a general vector obeying λ1 ≥
λ2 ≥ · · · ≥ λp ≥ 0, with at least one strict inequality. For any integer 0 < m < p,
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λ[m] � (λ1, . . . , λm) and λ−[m] � (λm+1, . . . , λp). We write λε (the superscript is
omitted to save space) for the ε-inflated BHq critical values,

λε,i = (1 + ε)λBH
i = (1 + ε)�−1(

1 − iq/(2p)
)
.

Last and for simplicity, β̂ is the SLOPE estimate, unless specified otherwise.

2. Alternatives to SLOPE? It is natural to wonder whether there are other
estimators, which can potentially match the theoretical performance of SLOPE for
sparse regression. Although getting an answer is beyond the scope of this paper,
we pause to consider a few alternatives.

2.1. Other �1 penalized methods. The Lasso,

minimize
b

1

2
‖y − Xb‖2 + λ‖b‖1,

serves as a building block for a lot of sparse estimation procedures. If λ is cho-
sen non adaptively, then a value equal to (1 − c) · σ√

2 logp for 0 < c < 1 would
cause a large number of false discoveries even under the global null and, conse-
quently, the risk when estimating sparse signals would be high. This phenomenon
can already be seen in the orthogonal case [34, 40]. This means that if we choose
λ in a nonadaptive fashion then we would need to select λ ≥ σ

√
2 logp. Under the

assumptions of Theorem 1.2 and setting λ = (1 + c) · σ
√

2 logp for an arbitrary
positive constant c gives

sup
‖β‖0≤k

P

(‖β̂Lasso − β‖2

2σ 2k logp
> 1

)
→ 1.(2.1)

The proof is in the supplementary materials [50]. Hence, the risk inflation does not
decreases as the sparsity level k increases, whereas it does for SLOPE. Note that
when p = n and k = p1−δ ,

2σ 2k logp

2σ 2k log(p/k)
→ 1

δ
.

The reason why the Lasso is suboptimal is that the bias is too large (the fitted
coefficients are shrunk too much toward zero). All in all, by our earlier consid-
erations and by letting δ → 0 above, we conclude that no matter how we pick λ

nonadaptively, the ratio

max risk of Lasso

max risk of SLOPE
→ ∞

in the worst case over k.
Figure 3(a) and 3(b) compare SLOPE with Lasso estimates for both strong and

moderate signals. SLOPE is more accurate than the Lasso in both cases, and the
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FIG. 3. (a) and (b) compares between SLOPE and Lasso under Gaussian design with
(n,p) = (500,1000) and σ = 1. The risk E‖β̂ − β‖2 is averaged over 100 replicates. SLOPE uses
λ = λBH(q) and Lasso uses λ = λBH

1 (q) with level q = 0.05. In (a), the components have magnitude

10λBH
1 ; in (b), the magnitudes are set to 0.8λBH

1 . Next, (c), (d), (e), (f) compare SLOPE with SURE

under orthogonal design. Empirical distributions of ‖β̂ − β‖2 is obtained from 10,000 replicates.
Strong signals have nonzero βi set to 100

√
2 logp while this value is 0.8

√
2 logp for moderate

signals. In (c) and (d), the bars represent 75% and 25% percentiles.

comparative advantage increases as k gets larger. This is consistent with the rea-
soning that SLOPE has a lower bias when k gets larger.

Of course, one might want to select λ in a data-dependent manner, perhaps
by cross-validation (see next section), or by attempting to control a type-I error
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such as the FDR. For instance, we could travel on the Lasso path and stop “at
some point.” Some recent procedures such as [43] make very strong assumptions
about the order in which variables enter the path and are likely not to yield sharp
estimation bounds such as (1.10)—provided that they can be analyzed. Others such
as [36] are likely to be far too conservative. In a different direction, it would be
interesting to compare SLOPE with the Lasso in different settings, where perhaps
both k/p and n/p converge to positive constants. While some tools have been
developed for the Lasso in this asymptotic regime [7], it is unclear how SLOPE
would behave and even what a good sequence of weights {λi} might be in this
case.

2.2. Data-driven procedures. While finding tuning parameters adaptively is
an entirely new issue, a data-driven procedure where the regularization parame-
ter of the Lasso is chosen in an adaptive fashion would presumably boost perfor-
mance. Cross-validation comes to mind whenever applicable, which is not always
the case as when y ∼ N (β, σ 2Ip). Cross-validation techniques are also subject to
variance effects and may tend to select over-parameterized models. To make the
selection of the tuning parameter as easy and accurate as possible, we work in the
orthogonal setting where we have available a remarkable unbiased estimate of the
risk.

SURE thresholding [26] for estimating a vector of means from y ∼ N (β, σ 2Ip)

is a cross-validation type procedure in the sense that the thresholding parameter
is selected to minimize Stein’s unbiased estimate of risk (SURE) [49]. For soft-
thresholding at λ, SURE reads

SURE(λ) = pσ 2 +
p∑

i=1

y2
i ∧ λ2 − 2σ 2#

{
i : |yi | ≤ λ

}
.

One then applies the soft-thresholding rule at the minimizer λ̂ of SURE(λ). It
has been observed [20, 26] that SURE thresholding loses performance in cases of
sparse signals β , an empirical phenomenon which can perhaps be made theoret-
ically precise. Indeed, our own work in progress aims to show that for any fixed
sparsity k, SURE thresholding obeys

sup‖β‖0≤k E‖β̂SURE − β‖2

sup‖β‖0≤k E‖β̂SLOPE − β‖2
≥ (

1 + o(1)
)k + 1

k
> 1,

where k is allowed to take the value zero and (k + 1)/k = ∞ in this case. In
particular, SURE has a risk that is infinitely larger than SLOPE under the global
null β = 0.

Figure 3 compares SLOPE with SURE in estimation error. In Figure 3(c)
and 3(d), we see that SURE thresholding exhibits a squared error, which is con-
sistently larger in mean (risk) and variability. This difference is more pronounced,
the sparser the signal. Figure 3(e) and 3(f) display the error distribution for k = 1;
we see that the error of SURE thresholding is distributed over a longer range.
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2.3. Variations on FDR thresholding. As brought up earlier, the paper [39]
suggests a variation on FDR thresholding, where an adaptive smooth-thresholding
rule is applied instead of a hard one. Such a procedure is still intrinsically limited to
sequence models, and cannot be generalized to linear regression. On this subject,
consider the sequential FDR thresholding rule,

β̂Seq,i = sgn(yi) · (|yi | − σλBH
r(i)

)
+,

where r(i) is the rank of yi when sorting the observations by decreasing order
of magnitude; that is, we apply soft-thresholding at level σλBH

i to the ith largest
observation (in magnitude). Under the same assumptions as in Theorem 1.1, this
estimator also obeys

sup
‖β‖0≤k

E‖β̂Seq − β‖2 = (
1 + o(1)

)
2σ 2k log(p/k).(2.2)

The proof is in [50] and resembles that of Theorem 1.1. Even though the worst case
performance of this estimate matches that of SLOPE, it is not a desirable procedure
for at least two reasons. The first is that it is not monotone; we may have |yi | > |yj |
and |β̂j | > |β̂i |, which does not make much sense. A consequence is that it will
generally have higher risk. Also note that this estimator is not continuous with
respect to y, since a small perturbation can change the ordering of magnitudes
and, therefore, the amount of shrinkage applied to an individual component. The
second reason is that this procedure does not really extend to linear models.

3. Orthogonal designs. This section proves the optimality of SLOPE under
orthogonal designs. As we shall see, the proof is considerably shorter and simpler
than that in [2] for FDR thresholding. One reason for this is that SLOPE continu-
ously depends on the observation vector while FDR thresholding does not, a fact
which causes serious technical difficulties. The discontinuities of the FDR hard-
thresholding procedure also limits the range of its effectiveness (recall the limits
on the range of sparsity levels which state that the signal cannot be too sparse or
too dense) as false discoveries result in large squared errors.

A reason for separating the proof in the orthogonal case is pedagogical in that
the argument is conceptually simple and, yet, some of the ideas and tools will carry
over to that of Theorem 1.2. From now on and throughout the paper, we set σ = 1.

3.1. Preliminaries. We collect some preliminary facts, which will prove use-
ful, and begin with a definition used to characterize the solution to SLOPE.

DEFINITION 3.1. A vector a ∈ R
p is said to majorize b ∈ R

p if for all i =
1, . . . , p,

|a|(1) + · · · + |a|(i) ≥ |b|(1) + · · · + |b|(i).
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This differs from a more standard definition (e.g., see [44]) where the last in-
equality with i = p is replaced by an equality (and absolute values are omitted).
We see that if a majorizes b and c majorizes d, then the concatenated vector (a, c)
majorizes (b,d). For convenience, we list below some basic but nontrivial proper-
ties of majorization and of the prox to the sorted �1 norm as defined in (1.7). All
the proofs are deferred to the supplementary material [50].

FACT 3.1. If a majorizes b, then ‖a‖ ≥ ‖b‖.

FACT 3.2. If λ majorizes a, then proxλ(a) = 0.

FACT 3.3. The difference a − proxλ(a) is majorized by λ.

FACT 3.4. Let T be a nonempty proper subset of {1, . . . , p}, and recall that
aT is the restriction of a to T and λ−[m] = (λm+1, . . . , λp). Then∥∥[

proxλ(a)
]
T

∥∥ ≤ ∥∥proxλ−[|T |](aT )
∥∥.

LEMMA 3.1. For any a, it holds that∥∥proxλ(a)
∥∥ ≤ ∥∥(|a| − λ

)
+

∥∥,
where |a| is the vector of magnitudes (|a1|, . . . , |ap|).

PROOF. The firm nonexpansiveness (e.g., see page 131 of [46]) of the prox
reads ∥∥proxλ(a) − proxλ(b)

∥∥2 ≤ (a − b)′
(
proxλ(a) − proxλ(b)

)
for all a,b. Taking b = sgn(a)�λ, where � is componentwise multiplication, and
observing that proxλ(b) = 0 (Fact 3.2) give∥∥proxλ(a)

∥∥2 ≤ 〈
sgn(a) � (|a| − λ

)
,proxλ(a)

〉
≤ 〈(|a| − λ

)
+, sgn(a) � proxλ(a)

〉
≤ ∥∥(|a| − λ

)
+

∥∥ · ∥∥proxλ(a)
∥∥,

where we use the nonnegativity of sgn(a) � proxλ(a) and the Cauchy–Schwarz
inequality. This yields the lemma. �

3.2. Proof of Theorem 1.1. Let S be the support of the vector β , S = supp(β),
and decompose the total mean-square error as

E‖β̂ − β‖2 = E‖β̂S − βS‖2 +E‖β̂S − βS‖2,

that is, as a the sum of the contributions on and off support (in case ‖β‖0 < k,
augment S to have size k). Theorem 1.1 follows from the following two lemmas.
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LEMMA 3.2. Under the assumptions of Theorem 1.1, for all k-sparse vec-
tors β ,

E‖β̂S − βS‖2 ≤ (
1 + o(1)

)
2k log(p/k).

PROOF. We know from Fact 3.3 that y − β̂ is majorized by λ = λBH, which
implies that yS − β̂S = βS + zS − β̂S is majorized by λ[k]. The triangle inequality
together with Fact 3.1 gives

‖βS − β̂S‖ = ‖βS + zS − β̂S − zS‖ ≤ ‖yS − β̂S‖ + ‖zS‖ ≤ ∥∥λ[k]∥∥ + ‖zS‖.
This gives

E‖βS − β̂S‖2 ≤
k∑

i=1

(
λBH

i

)2 +E‖zS‖2 + 2
√ ∑

1≤i≤k

(
λBH

i

)2
E‖zS‖

≤
k∑

i=1

(
λBH

i

)2 +E‖zS‖2 + 2
√ ∑

1≤i≤k

(
λBH

i

)2
E‖zS‖2

≤
k∑

i=1

(
λBH

i

)2 + k + 2
√

k
∑

1≤i≤k

(
λBH

i

)2

= (
1 + o(1)

)
2k log(p/k),

where the last step makes use of
∑

1≤i≤k(λ
BH
i )2 = (1 + o(1))2k log(p/k) and

log(p/k) → ∞. �

LEMMA 3.3. Under the assumptions of Theorem 1.1, for all k-sparse vec-
tors β ,

E‖β̂S − βS‖2 = o(1)2k log(p/k).(3.1)

PROOF. It follows from Fact 3.4 that

‖β̂S‖2 = ∥∥[
proxλ(y)

]
S

∥∥2 ≤ ∥∥proxλ−[k](zS)
∥∥2

.

We proceed by showing that for ζ ∼ N (0, Ip−k), E‖proxλ−[k](ζ )‖2 = o(1)2k ×
log(p/k). To do this, pick A > 0 sufficiently large such that q(1 + 1/A) < 1 in
Lemmas A.3 and A.4 of [50], which then give

p−k∑
i=1

E
(|ζ |(i) − λBH

k+i

)2
+ = o(1)2k log(p/k).

The conclusion follows from Lemma 3.1 since

E
∥∥proxλ−[k](ζ )

∥∥2 ≤
p−k∑
i=1

E
(|ζ |(i) − λBH

k+i

)2
+ = o(1)2k log(p/k).

�
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We conclude this section with a probabilistic bound on the squared loss. The
proposition below, whose argument is nearly identical to that of Theorem 1.1, shall
be used as a step in the proof of Theorem 1.2.

PROPOSITION 3.4. Fix 0 < q < 1 and set λ = (1 + ε)λBH(q) for some arbi-
trary 0 < ε < 1. Suppose k/p → 0, then for each δ > 0 and all k-sparse β ,

P

( ‖̂β − β‖2

2(1 + ε)2k log(p/k)
< 1 + δ

)
→ 1.

Here, the convergence is uniform over ε.

PROOF. We only sketch the proof. As in the proof of Lemma 3.2, we have

‖βS − β̂S‖ ≤ ∥∥λ[k]
ε

∥∥ + ‖zS‖.
Since ‖λ[k]

ε ‖ = (1 + o(1)) · (1 + ε)
√

2k log(p/k) and ‖zS‖ = oP(
√

2k log(p/k)),
we have that for each δ > 0,

P

( ‖β̂S − βS‖2

2(1 + ε)2k log(p/k)
< 1 + δ/2

)
→ 1.

Since λ has increased, it is only natural that the off-support error remains under
control. In fact, (3.1) still holds, and the Markov inequality then gives

P

(‖β̂S − βS‖2

2k log(p/k)
<

δ

2

)
→ 1.

This completes the proof. �

4. Gaussian random designs. When moving from an orthogonal to a
nonorthogonal design, the correlations between the columns of X and the high
dimensionality create much difficulty. This is already apparent when scanning the
literature on penalized sparse estimation procedures such as the Lasso, SCAD
[32], the Dantzig selector [21] and MC+ [58]; see, for example, [7, 11, 22, 23,
27, 37, 45, 53, 55, 57, 59] for a highly incomplete list of references. For exam-
ple, a statistical analysis of the Lasso often relies on several ingredients: first, the
Karush–Kuhn–Tucker (KKT) optimality conditions; second, appropriate assump-
tions about the designs such as the Gaussian model we use here, which guarantee
a form of local orthogonality (known under the name of restricted isometries or
restricted eigenvalue conditions); third, the selection of a penalty λ several times
the size of the universal threshold σ

√
2 logp, which while introducing a large bias

yielding MSEs that cannot possibly approach the precise bounds we develop in
this paper, facilitates the analysis since it effectively sets many coordinates to zero.

Our approach must be different for at least two reasons. To begin with, the
KKT conditions for SLOPE are not easy to manipulate. Leaving out this technical
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matter, a more substantial difference is that the SLOPE regularization is far weaker
than that of a Lasso model with a large value of the regularization parameter λ. To
appreciate this distinction, consider the orthogonal design setting. In such a simple
situation, it is straightforward to obtain error estimates about a hard thresholding
rule set at—or several times—the Bonferroni level. Getting sharp estimates for
FDR thresholding is entirely a different matter; compare the far longer proof in [2].

4.1. Architecture of the proof. Our aim in this section is to provide a general
overview of the proof, explaining the key novel ideas and intermediate results. At
a high level, the general structure is fairly simple and is as follows:

1. Exhibit an ideal estimator β̃ , which is easy to analyze and achieves the opti-
mal squared error loss with high probability.

2. Prove that the SLOPE estimate β̂ is close to this ideal estimate.

We discuss these in turn and recall that throughout, λ = (1 + ε)λBH(q).
A solution algorithm for SLOPE is the proximal gradient method, which oper-

ates as follows: starting from an initial guess b(0) ∈ R
p , inductively define

b(m+1) = proxtmλ

(
b(m) − tmX′(Xb(m) − y

))
,

where {tm} is an appropriate sequence for step sizes. It is empirically observed that
under sparsity constraints, the proximal gradient algorithm for SLOPE (and Lasso)
converges quickly provided we start from a good initial point. Here, we propose
approximating the SLOPE solution by starting from the ground truth and applying
just one iteration; that is, with t0 = 1, define

β̃ := proxλ

(
β + X′z

)
.(4.1)

This oracle estimator β̃ approximates the SLOPE estimator β̂ well—they are equal
when the design is orthogonal—and has statistical properties far easier to under-
stand. The lemma below is the subject of Section 4.2.

LEMMA 4.1. Under the assumptions of Theorem 1.2, for all k-sparse β , we
have

P

( ‖β̃ − β‖2

(1 + ε)22k log(p/k)
< 1 + δ

)
→ 1,

where δ > 0 is an arbitrary constant.

Since we know that β̃ is asymptotically optimal, it suffices to show that the
squared distance between β̂ and β̃ is negligible in comparison to that between β̃

and β . This captured by the result below, whose proof is the subject of Section 4.3.
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LEMMA 4.2. Let T ⊂ {1, . . . , p} be a subset of columns assumed to contain
the supports of β̂ , β̃ and β; that is, T ⊃ supp(β̂) ∪ supp(β̃) ∪ supp(β). Suppose
all the eigenvalues of X′

T XT lie in [1 − δ,1 + δ] for some δ < 1/2. Then

‖β̃ − β̂‖2 ≤ 3δ

1 − 2δ
‖β̃ − β‖2.

In particular, β̂ = β̃ under orthogonal designs.

We thus see that everything now comes down to showing that there is a set
of small cardinality containing the supports of β̂ , β̃ and β . While it is easy to
show that supp(β̃) ∪ supp(β) is of small cardinality, it is delicate to show that this
property still holds with the addition of the support of the SLOPE estimate. Below,
we introduce the resolvent set, which will prove to contain supp(β̂) ∪ supp(β̃) ∪
supp(β) with high probability.

DEFINITION 4.1 (Resolvent set). Fix S = supp(β) of cardinality at most k,
and an integer k� obeying k < k� < p. The set S� = S�(S, k�) is said to be a
resolvent set if it is the union of S and the k� − k indices with the largest values of
|X′

iz| among all i ∈ {1, . . . , p} \ S.

Under the assumptions of Theorem 1.2, we shall see in Section 4.4 that we can
choose k� in such a way that on the one hand k� is sufficiently small compared to
p and n/ logp, and on the other, the resolvent set S� is still expected to contain
supp(β̃) (easier) and supp(β̂) (more difficult). Formally, Lemma 4.4 below shows
that

inf‖β‖0≤k
P

(
supp(β) ∪ supp(β̂) ∪ supp(β̃) ⊂ S�) → 1.(4.2)

One can view the resolvent solution as a sophisticated type of a dual certificate
method, better known as primal-dual witness method [22, 48, 55] in the statistics
literature. A significant gradation in the difficulty of detecting the support of the
SLOPE solution a priori comes from the false discoveries we commit because we
happen to live on the edge, that is, work with a procedure as liberal as can be.

With (4.2) in place, Theorem 1.2 merely follows from Lemma 4.2 and the ac-
curacy of β̃ explained by Lemma 4.1; all the bookkeeping is in Section 4.5. Fur-
thermore, Corollary 1.4 is just one stone throw away; please also see Section 4.5
for all the necessary details.

4.2. One-step approximation. The proof of Lemma 4.1 is an immediate con-
sequence from Proposition 3.4. In brief, Borell’s inequality (see Lemma A.5 in
[50]) provides a well-known deviation bound about chi-square random variables,
namely,

P
(‖z‖ ≤ (1 + ε)

√
n
) ≥ 1 − e−ε2n/2 → 1
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since ε2n → ∞. Hence, to prove our claim, it suffices to establish that

P

(‖proxλε
(β + X′z) − β‖2

(1 + ε)22k log(p/k)
< 1 + δ

∣∣∣‖z‖ ≤ (1 + ε)
√

n

)
→ 1.(4.3)

Conditional on ‖z‖ = c
√

n for some 0 < c ≤ 1 + ε, X′z ∼ N (0, c2Ip) and, there-
fore, conditionally,∥∥proxλε

(
β + X′z

) − β
∥∥ d= ∥∥proxλε

(
β + cN (0, Ip)

) − β
∥∥

= c
∥∥proxλε′

(
β/c +N (0, Ip)

) − β/c
∥∥

for ε′ = (1 + ε)/c − 1 ≥ 0. Hence, Proposition 3.4 gives

P

(‖proxλε′ (β/c +N (0, Ip)) − β/c‖2

(1 + ε′)22k log(p/k)
< 1 + δ

)
→ 1.

Since (1 + ε)2/c2 = (1 + ε′)2, this is equivalent to

P

(c2‖proxλε′ (β/c +N (0, Ip)) − β/c‖2

(1 + ε)22k log(p/k)
< 1 + δ

)
→ 1.

This completes the proof since we can deduce (4.3) by averaging over ‖z‖.

4.3. β̃ and β̂ are close when X is nearly orthogonal. We prove Lemma 4.2 in
the case where T = {1, . . . , p}, first. Set Jλ(b) = ∑

1≤i≤p λi |b|(i), by definition β̂

and β̃ respectively, minimize

L1(b) := 1
2

∥∥X(β − b)
∥∥2 + z′X(β − b) + Jλ(b),

L2(b) := 1
2

∥∥β − b
∥∥2 + z′X(β − b) + Jλ(b).

Next, the assumptions about the eigenvalues of X′X implies that these two func-
tions are related,

L2(β̃) − δ

2
‖β − β̃‖2 ≤ L1(β̃) ≤ L2(β̃) + δ

2
‖β − β̃‖2,

L2(β̂) − δ

2
‖β − β̂‖2 ≤ L1(β̂) ≤ L2(β̂) + δ

2
‖β − β̂‖2.

Chaining these inequalities gives

L2(β̃) + δ‖β − β̃‖2

2
≥ L1(β̃) ≥ L1(β̂) ≥ L2(β̂) − δ‖β − β̂‖2

2
.(4.4)

Now the strong convexity of L2 also gives

L2(β̂) ≥ L2(β̃) + ‖β̃ − β̂‖2

2
,
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and plugging this in the right-hand side of (4.4) yields

‖β̃ − β̂‖2

2
− δ‖β − β̂‖2

2
≤ δ‖β − β̃‖2

2
.(4.5)

Since δ‖β − β̂‖2/2 ≤ δ‖β̃ − β̂‖2 +δ‖β − β̃‖2 [this is essentially the basic inequal-
ity (a + b)2 ≤ 2a2 + 2b2], the conclusion follows.

We now consider the general case. Let m be the cardinality of T and for b ∈ R
m,

set Jλ[m](b) = ∑
1≤i≤m λi |b|(i), and observe that by assumption, β̂T and β̃T are

solutions to the reduced problems

argmin
b∈R|T |

1

2
‖y − XT b‖2 + Jλ[m](b)(4.6)

and

argmin
b∈R|T |

1

2

∥∥βT + X′
T z − b

∥∥2 + Jλ[m](b).

Using the fact that Xβ = XT βT , we see that β̂T and β̃T , respectively, minimize

L1(b) := 1
2

∥∥XT (βT − b)
∥∥2 + z′XT (βT − b) + Jλ[m](b),

L2(b) := 1
2

∥∥βT − b
∥∥2 + z′XT (βT − b) + Jλ[m](b).

From now on, the proof is just as before.

4.4. Support localization. Below we write a � b as a short-hand for b ma-
jorizes a and

S� = supp(β) ∪ supp(β̂) ∪ supp(β̃).(4.7)

LEMMA 4.3 (Reduced SLOPE). Let b̂T be the solution to the reduced SLOPE
problem (4.6), which only fits regression coefficients with indices in T . If

X′
T
(y − XT b̂T ) � λ−[|T |],(4.8)

then it is the solution to the full SLOPE problem in the sense that β̂ defined as
β̂T = b̂T and β̂T = 0 is solution.

Inequality (4.8), which implies localization of the solution, reminds us of a sim-
ilar condition for the Lasso. In particular, if λ1 = λ2 = · · · = λp , then SLOPE is
the Lasso and (4.8) is equivalent to ‖X′

T
(y − XT b̂T )‖∞ ≤ λ. In this case, it is well

known that this implies that a solution to the Lasso is supported on T ; see, for
example, [22, 48, 55].

The main result of this section is this.
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LEMMA 4.4. Suppose

k� ≥ max
{

1 + c

1 − q
k, k + d

}
for an arbitrary small constant c > 0, where d is a deterministic sequence diverg-
ing to infinity6 in such a way that k�/p → 0 and (k� logp)/n → 0. Then

inf‖β‖0≤k
P

(
S� ⊂ S�) → 1.

PROOF. By construction, supp(β) ⊂ S� so we only need to show (i) supp(β̂) ⊂
S� and (ii) supp(β̃) ⊂ S�. We begin with (i). By Lemma 4.3, supp(β̂) is contained
in S� if

X′
S�(y − XS� β̂S�) � λ−[k�]

ε ,

which would follow from

X′
S�XS�(βS� − β̂S�) � ε

2

(
λBH

k�+1, . . . , λ
BH
p

)
(4.9)

and

X′
S�z � (1 + ε/2)

(
λBH

k�+1, . . . , λ
BH
p

)
.(4.10)

Lemma A.12 in the supplementary material [50] concludes that (4.9) holds
with probability tending to one, since, by assumption, ε > 0 is constant and√

(k� logp)/n → 0. To show that (4.10) also holds with probability approach-
ing one, we resort to Lemma A.9 in [50]. Conditional on z, X′

S
z ∼ N (0,‖z‖2/n ·

Ip−k). By definition, X′
S�z is formed from X′

S
z by removing its k� − k largest en-

tries in absolute value. Denoting by ζ1, . . . , ζp−k i.i.d. standard Gaussian random
variables, (4.10) thus boils down to

(|ζ |(k�−k+1), |ζ |(k�−k+2), . . . , |ζ |(p−k)

) � (1 + ε/2)
√

n

‖z‖
(
λBH

k�+1, . . . , λ
BH
p

)
.(4.11)

Borell’s inequality (Lemma A.5 [50]) gives

P
(
(1 + ε/2)

√
n/‖z‖ < 1

) = P
(‖z‖ − √

n > ε
√

n/2
) ≤ e−nε2/8 → 0.

The conclusion follows from Lemma A.9 in [50].
We turn to (ii) and note that(

β + X′z
)
S� = X′

S�z.

6Recall that we are considering a sequence of problems with (kj , nj ,pj ) so that this is saying that

k�
j ≥ max(2(1 − q)−1kj , kj + dj ) with dj → ∞.
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Now our previous analysis implies X′
S�z � λ−[k�]

ε with probability tending to one.
However, it follows from Facts 3.4 and 3.2 that

‖β̃S�‖ = ∥∥proxλε

(
β + X′z

)
S�

∥∥ ≤ ∥∥prox
λ

−[k�]
ε

(
X′

S�z
)∥∥ = 0.

In summary, X′
S�z � λ−[k�]

ε ⇒ supp(β̃) ⊂ S�. This completes the proof. �

4.5. Proof of Theorem 1.2 and Corollary 1.4. Put

δ = 1 + 3ε

(1 + ε)2 − 1 = ε − ε2

(1 + ε)2 > 0,

and choose any δ′ > 0 such that(
1 + δ′)(√3δ′/

(
1 − 2δ′) + 1

)2
(1 + δ/2) < (1 + δ).

Let A1 be the event S� ⊂ S�, A2 that all the singular values of XS� lie in
[√1 − δ′,

√
1 + δ′], and A3 that

‖β̃ − β‖2

(1 + ε)22k log(p/k)
< 1 + δ

2
.

We prove that each event happens with probability tending to one. For A1, use
Lemma 4.4, and set

d = min
{⌊√

kn/ logp
⌋
, �√p�},

which diverges to ∞, and

k� = max
{⌈

2k/(1 − q)
⌉
, k + d

}
.

It is easy to see that k� satisfies the assumptions of Lemma 4.4, which asserts
that P(A1) → 1 uniformly over all k-sparse β . For A2, since (k� logp)/n → 0
implies that k� log(p/k�)/n → 0, then taking t sufficiently small in Lemma A.11
[50] gives P(A2) → 1 uniformly over all k-sparse β . Finally, P(A3) → 1 also
uniformly over all k-sparse β by Lemma 4.1 since ε2n → ∞.

Hence, P(A1 ∩ A2 ∩ A3) → 1 uniformly over all β with sparsity at most k.
Consequently, it suffices to show that on this intersection,

‖β̂ − β‖2

2k log(p/k)
< 1 + 3ε,

‖Xβ̂ − Xβ‖2

2k log(p/k)
< 1 + 3ε.

On A2 ∩A3, all the eigenvalues values of X′
S�XS� are between 1−δ′ and 1+δ′. By

definition, all the coordinates of β, β̂ and β̃ vanish outside of S�. Thus, Lemma 4.2
gives

‖β̂ − β‖ ≤ ‖β̂ − β̃‖ + ‖β̃ − β‖ ≤
(√

3δ′
1 − 2δ′ + 1

)
‖β̃ − β‖

≤
(

1 + δ

(1 + δ/2)(1 + δ′)

)1/2

‖β̃ − β‖.
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Hence, on A1 ∩ A2 ∩ A3, we have

‖β̂ − β‖2

2k log(p/k)
≤ 1 + δ

(1 + δ/2)(1 + δ′)
· ‖β̃ − β‖2

2k log(p/k)
<

(1 + δ)(1 + ε)2

1 + δ′ < 1 + 3ε,

and similarly,

‖Xβ̂ − Xβ‖2

2k log(p/k)
≤ (

1 + δ′) ‖β̂ − β‖2

2k log(p/k)
<

(
1 + δ′)(1 + δ)(1 + ε)2

1 + δ′ = 1 + 3ε.

This completes the proof.

5. Lower bounds. We here prove Theorem 1.3, the lower matching bound for
Theorem 1.2, and leave the proof of Corollary 1.5 to the supplementary materials
[50]. Once again, we warm up with the orthogonal design and develop tools that
can be readily applied to the regression case.

5.1. Orthogonal designs. Suppose y ∼ N (β, Ip). The first result states that in
this model, the squared loss for estimating 1-sparse vectors cannot be lower than
2 logp. The proof is in [50].

LEMMA 5.1. Let τp = (1 + o(1))
√

2 logp be a sequence obeying
√

2 logp −
τp → ∞. Consider the prior π for β , which selects a coordinate i uniformly at
random in {1, . . . , p}, and sets βi = τp and βj = 0 for j �= i. For each ε > 0,

inf
β̂
Pπ

(‖β̂ − β‖2

2 logp
> 1 − ε

)
→ 1.

Next, we state a counterpart to Theorem 1.1, whose proof constructs k indepen-
dent 1-sparse recovery problems.

PROPOSITION 5.2. Suppose k/p → 0. Then for any ε > 0, we have

inf
β̂

sup
‖β‖0≤k

P

( ‖β̂ − β‖2

2k log(p/k)
> 1 − ε

)
→ 1.

PROOF. The fundamental duality between “min max” and “max min” gives

inf
β̂

sup
‖β‖0≤k

P

( ‖β̂ − β‖2

2k log(p/k)
> 1 − ε

)
≥ sup

‖π̃‖0≤k

inf
β̂
Pπ̃

( ‖β̂ − β‖2

2k log(p/k)
> 1 − ε

)
.

Above, π̃ denotes any distribution on R
p such that any realization β obeys

‖β‖0 ≤ k, and Pπ̃ (·) emphasizes that β follows the prior π̃ , as earlier in
Lemma 5.1. It is therefore sufficient to construct a prior π̃ with a right-hand side
approaching one.
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Assume p is a multiple of k (otherwise, replace p with p0 = k�p/k� and let
π be supported on {1, . . . , p0}). Partition {1, . . . , p} into k consecutive blocks
{1, . . . , p/k}, {p/k + 1, . . . ,2p/k} and so on. Our prior is a product prior, where
on each block, we select a coordinate uniformly at random and sets its amplitude
to τ = (1 + o(1))

√
log(p/k) and

√
2 log(p/k) − τ → ∞. Next, let β̂ be any esti-

mator and write the loss ‖β̂ − β‖2 = L1 + · · · + Lk , where Lj is the contribution
from the j th block. The lemma is reduced to proving

inf
β̂
Pπ

(
L1 + · · · + Lk

2k log(p/k)
> 1 − ε

)
→ 1.(5.1)

For any constant ε′ > 0, since p/k → ∞, Lemma 5.1 claims that

inf
β̂
Pπ

(
Lj

2 log(p/k)
> 1 − ε′

)
→ 1(5.2)

uniformly over j = 1, . . . , k since distinct blocks are stochastically independent.
Set

L̄j = min
{
Lj ,2 log(p/k)

} ≤ Lj .

On one hand,

E(L̄1 + · · · + L̄k)

2k log(p/k)

≤ (1 − ε) · Pπ

(
L̄1 + · · · + L̄k

2k log(p/k)
≤ 1 − ε

)
+ Pπ

(
L̄1 + · · · + L̄k

2k log(p/k)
> 1 − ε

)
.

On the other,

E(L̄1 + · · · + L̄k)

2k log(p/k)
≥ 1 − ε′

k

k∑
j=1

Pπ

(
L̄j

2 log(p/k)
> 1 − ε′

)
.

All in all, this gives

sup
β̂

Pπ

(
L̄1 + · · · + L̄k

2k log(p/k)
≤ 1 − ε

)

≤ 1

ε
·
(

1 − (
1 − ε′) inf

β̂,j
Pπ

(
L̄j

2 log(p/k)
> 1 − ε′

))
.

Finally, take the limit p → ∞ in the above inequality. Since L̄j /(2 log(p/k)) >

1 − ε′ if and only if Lj/(2 log(p/k)) > 1 − ε′, it follows from (5.2) that

lim sup
p→∞

sup
β̂

Pπ (
L̄1 + · · · + L̄k

2k log(p/k)
≤ 1 − ε) ≤ ε′

ε
.

We conclude by taking ε′ → 0. �
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5.2. Random designs. We return to the regression setup y ∼ N (Xβ, Ip),
where X is our Gaussian design.

LEMMA 5.3. Fix α ≤ 1 and

τp,n = (√
2 logp − log

√
2 logp

)(
1 − 2

√
(logp)/n

)
.

Let π be the prior from Lemma 5.1 with amplitude set to α · τn,p . Assume
(logp)/n → 0. Then for any ε > 0,

inf
β̂
Pπ

( ‖β̂ − β‖2

α2 · 2 logp
> 1 − ε

)
→ 1.

With this, we are ready to prove a stronger version of Theorem 1.3.

THEOREM 5.4 (Stronger version of Theorem 1.3). Consider y ∼ N (Xβ,

σ 2Ip), where X is our Gaussian design, k/p → 0 and log(p/k)/n → 0. Then
for each ε > 0,

inf
β̂

sup
‖β‖0≤k

P

( ‖β̂ − β‖2

σ 2 · 2k log(p/k)
> 1 − ε

)
→ 1.

PROOF. The proof follows that of Proposition 5.2. As earlier, assume that
σ = 1 without loss of generality. The block prior π and the decomposition of the
loss L are exactly the same as before except that we work with

τ = (√
2 log(p/k) − log

√
2 log(p/k)

)(
1 − 2

√
log(p/k)/n

)
.

Hence, it suffices to prove (5.2) in the current setting, which does not directly
follow from Lemma 5.3 because of correlations between the columns of X. Thus,
write the linear model as

y = Xβ + z = X(1)β(1) + X−(1)β−(1) + z,

where X(1) (resp., β(1)) are the first p/k columns of X (resp., coordinates of β)
and X(−1) all the others. Then

z̃ := X−(1)β−(1) + z ∼ N
(
0,

(
τ 2(k − 1)/n + 1

)
In

)
,

and is independent of X(1) and β(1). Since τ 2(k−1)/n+1 ≥ 1 and n/ log(p/k) →
∞, we can apply Lemma 5.3 to

y = X(1)β(1) + z̃.

This establishes (5.2). �



ADAPTIVITY AND MINIMAXITY OF SLOPE 1065

6. Discussion. Regardless of the design, SLOPE is a concrete and rapidly
computable estimator, which also has intuitive statistical appeal. For Gaussian de-
signs, taking Benjamini–Hochberg weights achieves asymptotic minimaxity over
large sparsity classes. Furthermore, it is likely that our novel methods would allow
us to extend our optimality results to designs with i.i.d. sub-Gaussian entries; for
example, designs with independent Bernoulli entries. Since SLOPE runs without
any knowledge of the unknown degree of sparsity, we hope that taken together,
adaptivity and minimaxity would confirm the appeal of this procedure.

It would of course be of great interest to extend our results to a broader class
of designs. In particular, we would like to know what types of results are available
when the variables are correlated. In such settings, is there a good way to select the
sequence of weights {λi} when the rows of the design are independently sampled
from a multivariate Gaussian distribution with zero mean and covariance �, say?
How should we tune this sequence for fixed designs? This paper does not address
such important questions, and we leave these open for future research.

Finally, returning to the issue of FDR control it would be interesting to establish
rigorously whether or not SLOPE controls the FDR in sparse settings.
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SUPPLEMENTARY MATERIAL

Supplement to “SLOPE is adaptive to unknown sparsity and asymptoti-
cally minimax” (DOI: 10.1214/15-AOS1397SUPP; .pdf). The supplementary ma-
terials contain proofs of some technical results in this paper.
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