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Abstract

Large language models (LLMs) represent a new paradigm for processing unstructured data,
with applications across an unprecedented range of domains. In this paper, we address, through
two arguments, whether the development and application of LLMs would genuinely benefit from
foundational contributions from the statistics discipline. First, we argue affirmatively, begin-
ning with the observation that LLMs are inherently statistical models due to their profound
data dependency and stochastic generation processes, where statistical insights are naturally es-
sential for handling variability and uncertainty. Second, we argue that the persistent black-box
nature of LLMs—stemming from their immense scale, architectural complexity, and develop-
ment practices often prioritizing empirical performance over theoretical interpretability—renders
closed-form or purely mechanistic analyses generally intractable, thereby necessitating statisti-
cal approaches due to their flexibility and often demonstrated effectiveness. To substantiate
these arguments, the paper outlines several research areas—including alignment, watermark-
ing, uncertainty quantification, evaluation, and data mixture optimization—where statistical
methodologies are critically needed and are already beginning to make valuable contributions.
We conclude with a discussion suggesting that statistical research concerning LLMs will likely
form a diverse “mosaic” of specialized topics rather than deriving from a single unifying theory,
and highlighting the importance of timely engagement by our statistics community in LLM
research.

1 Introduction

Consider a thought experiment where an octopus under the seabed connects to a submarine cable
and then eavesdrops on human conversations without any prior knowledge of human language. All
it has access to are the utterances of one speaker and the corresponding responses of the other.
One may ask: can the octopus ever learn to understand human language, the content of these
conversations, and even possess some level of intelligence, purely based on human conversations by
passively listening to arbitrarily large amounts of these paired observations?
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This thought experiment illustrates how large language models (LLMs) are essentially developed
(Kottke, 2023). LLMs are massive neural networks, predominantly based on the Transformer archi-
tecture (Vaswani et al., 2017), trained on immense text corpora—including human-written content,
code, and various other forms of text—to predict the next word (formally called a “token”) given
the preceding sequence of tokens (Radford et al., 2018; Brown et al., 2020). By design, an LLM is
an autoregressive model that attempts to learn language purely by learning statistical patterns in
human-generated text, rather than explicit linguistic rules or semantic grounding.

Interestingly, when Ilya Sutskever and his colleagues at OpenAI proposed next-token prediction
as a training strategy in 2018 (Radford et al., 2018), very few researchers believed that such a simple
training paradigm would yield capabilities resembling “understanding” of language (Bender et al.,
2021; Matthew and Toner, 2024).1 In stark contrast, when browser-based ChatGPT launched in late
2022, it created a global sensation as the public marveled at its ability to generate human-like text
and handle wide-ranging tasks (Bubeck et al., 2023).2 Not only did ChatGPT impress users with
its near Turing test level conversational abilities (Jones and Bergen, 2025), but it also demonstrated
elementary reasoning skills—enough to carry out basic statistical analyses and data visualization
(Tu et al., 2024; Lin and Zhu, 2025). These capabilities have continued to advance at a rapid pace.

Given that LLMs involve many statistical aspects, a burgeoning body of statistical research on
LLMs has emerged (Ji et al., 2025). Nonetheless, the question we pose here is whether LLMs would
genuinely benefit from statistical foundations that our community develops. Furthermore, we ask
if such statistical contributions would lead to improved development, deployment, and application,
particularly to guide and enhance their real-world use? In other words, we move beyond the dis-
cussion of how LLMs can be used to enhance statistical analysis and statistical education to focus
on whether statistical methodology and insights can improve LLMs themselves.3

A straightforward argument supporting the need for statistics in LLMs comes from Richard
Sutton’s influential essay, The Bitter Lesson (Sutton, 2019). The recent Turing Award laureate
observed that enduring progress in artificial intelligence (AI) over decades has primarily stemmed
from leveraging increased computational power and data scale, rather than incorporating hard-coded
human knowledge or intricate model design. Statistical approaches are well suited to leveraging
massive data via computation, as they are designed to let the data speak for themselves. Indeed,
Sutton articulated in his essay that “statistics and computation came to dominate the field” of AI.

Given the repeated validation of the bitter lesson (Yousefi and Collins, 2024), there are com-
pelling reasons to believe that statistics will undoubtedly benefit LLMs. However, we should recog-
nize that the term “statistics” in Sutton’s context is broad. It encompasses both purely predictive
algorithms—such as neural networks, boosting, and random forests—and what might be termed in-

1In this paper, we exclude non-GPT models such as BERT from our discussion, which use a masked-language-
modeling objective (Devlin et al., 2019).

2Although the NLP community had already been impressed by GPT-3 in 2020, ChatGPT’s web interface made
these advances far more widely accessible.

3For clarity, this paper does not address how LLMs can be used to enhance statistical analysis or statistical
education. Interested readers are referred to Tu et al. (2024).
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ferential statistics. This latter category roughly corresponds to what Bradley Efron termed “estima-
tion and attribution” methods (Efron, 2020) or what Leo Breiman called “data-modeling” methods
in his Two Cultures paper (Breiman, 2001). These approaches focus on interpretable parameters
and uncertainty quantification to make inferences from noisy observations. In this paper, we ask
whether LLMs, as they become more powerful and widely deployed, would benefit from the in-
terpretable, inferential, and uncertainty-aware techniques that statistics in this narrower sense can
offer.

We argue affirmatively that LLMs require more statistical contributions for their continued
advancement. Although LLMs by design are purely predictive algorithms, they differ significantly
from prior methods in this category, including even pre-Transformer neural networks (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014). This distinction emerges in two key ways: First, LLMs
operate on an unprecedented diversity of data types, including almost all possible forms of text data.
While earlier models could process text (Manning and Schutze, 1999), it is the first time a single
model can integrate and process text almost as seamlessly as numbers, enabling a unified approach
to handling tasks as diverse as code generation, language translation, and data analysis, marking a
substantial departure from previous predictive algorithms primarily focused on structured or image
data. This strong data dependency positions LLMs as compressors of vast human data, as suggested
by the influential metaphor “ChatGPT is a blurry JPEG of the web” (Chiang, 2023). Second, the
generative and stochastic nature of LLMs, which arises from next-token prediction, makes the models
themselves random, with outputs necessarily involving variability and uncertainty (Huang et al.,
2025). Together, these characteristics lead to numerous statistical challenges and opportunities for
principled treatment of variability, uncertainty, calibration, and inference, especially when LLMs
are used in high-stakes decision-making.

Moreover, we contend that for many LLM-related problems, statistics may be not just useful
but sometimes perhaps the only viable approach. To make this case, we highlight the black-box
status of LLMs, meaning it is difficult to understand how they arrive at their decisions. While the
degree of black-boxness can vary, LLMs are arguably among the most complex digital systems ever
constructed. We will provide evidence that this black-box nature is not merely a temporary state
but likely to persist. Consequently, deriving LLM behavior from first principles via mathematical
modeling, as is often possible in physics, appears highly challenging, if not infeasible. As such,
when direct mathematical modeling is impractical, statistical modeling often offers a flexible and
effective approach to shedding light on complex systems. Indeed, statistical approaches allow us to
posit and test relationships between observable variables (like inputs and outputs) and potentially
unobservable latent factors, even before their internal mechanisms are fully understood (Candès
and Sabatti, 2020). Examples include understanding how different data mixtures influence model
capabilities or quantifying the uncertainty of the outputs of LLMs using conformal prediction (Liu
et al., 2025b; Mohri and Hashimoto, 2024; Cherian et al., 2024).

Having argued for the fundamental necessity of statistics for LLMs, we outline several statistical
research avenues on LLMs, which are illustrative rather than exhaustive, reflecting the rapid evolu-
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tion of the field. These range from the formulation of principled methods for aligning models with
human values, to leveraging the models’ probabilistic outputs for tasks like content verification, to
rigorously evaluating model capabilities and quantifying output uncertainty, and finally to optimiz-
ing the central role of data in shaping LLM performance. Given that LLMs operate in an end-to-end
manner—directly processing text inputs to produce text outputs that can inform decisions or trigger
actions—they permeate an ever-wider range of applications, continuously generating new statistical
challenges and opportunities. Echoing Efron’s sentiment about algorithmic developments originat-
ing outside statistics, “future progress, especially in scientific applicability, will depend heavily on
us” (Efron, 2020).

2 LLMs as Statistical Models

While designed as a predictive method where the underlying data-generating mechanism is treated
as unknown, LLMs exhibit characteristics that distinguish them significantly from many other pre-
dictive algorithms (Breiman, 2001; Efron, 2020). Predictive methods like decision trees or support
vector machines often rely on feature engineering or, equivalently, carefully chosen kernels, whereas
modern LLMs operate in a nearly end-to-end data-centric manner, trained directly on vast quantities
of raw data with minimal human intervention beyond data selection and cleaning.4

Owing to this strong data dependency, the capabilities of LLMs are largely determined by the
properties and scale of the training data (Thrush et al., 2024). This fact is quantitatively captured
by scaling laws, which demonstrate a predictable relationship between model capabilities and the
volume of training data during the pre-training phase (Kaplan et al., 2020). In essence, scaling laws
suggest that LLMs are what they are trained on, elevating data to the most critical component
of their development. As evidence, while open-source LLM developers often release model weights
and sometimes some technical details of their training processes, the composition and preparation
of their training datasets are almost never disclosed (Grattafiori et al., 2024; Liu et al., 2024).

The pivotal role of data continues after the pre-training phase. To achieve proficiency in complex
tasks, LLMs typically undergo specialized post-training (Ouyang et al., 2022). This necessitates
the use of vast corpora of high-quality and meticulously annotated examples to impart nuanced
understanding and desired behaviors to LLMs. This has led to the rise of a substantial data-labeling
and annotation industry for training, refining, and aligning AI models.

One might argue that this data-centricity is shared to some extent with smaller deep learning
models, not solely LLMs. Yet LLMs stand apart due to two characteristics:

Anything as numeric. LLMs operate directly on unstructured information—plain language,
code, numbers, or even symbolic mathematics—by converting diverse data types into high-dimensional
numeric vectors often thought to lie in a “semantic” space (Mikolov et al., 2013). This enables flex-

4Indeed, data curation is nontrivial in practice, but from a methodological perspective, no detailed human knowl-
edge of linguistic constructs is explicitly hard-coded into LLMs at training time.
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ible execution of transformations within this semantic space, which LLMs ultimately map back to
text. This allows LLMs to process anything representable as text almost as readily as regression
models handle numbers. In effect, LLMs instantiate a general-purpose engine operating on nu-
meric representations of virtually all forms of text data. Indeed, Geoffrey Hinton metaphorically
described GPT-4 as emerging like a butterfly from billions of nuggets of understanding accumulated
throughout human history (Hinton, 2023).

Stochastic nature of generation. The predominant training paradigm for modern LLMs is
next-token prediction (Radford et al., 2018).5 Crucially, this generative process is inherently stochas-
tic, depending not only on the prior context but also on the data used for training LLMs. This
randomness is not merely an artifact but arguably a necessity for modeling human language, which
itself—whether in stories, manuals, essays, creative writing, code, or mathematical proofs—is gener-
ative and rarely follows a deterministic path. This contrasts sharply with many earlier deep learning
applications, particularly in classification, where outputs often correspond to fixed, deterministic
ground truths.

These two characteristics—the universal processing of data through numerical embedding and
the inherent stochasticity in generation—arguably position LLMs in a way that resonates more
closely with data-modeling or inferential methods than typical predictive algorithms. Recognizing
this allows us to appreciate the potential and necessity of statistical insights for LLMs beyond their
initial purely predictive design. Consequently, we can effectively treat LLMs as statistical models.

Statistics becomes particularly relevant when a system involves dependence on data and the
inference of patterns from that data. Indeed, the data-hungry nature of LLMs, coupled with their
ability to process “anything as numeric,” leads to complex data-dependent patterns. The sheer
scale and heterogeneity of LLM training data present many opportunities and significant challenges
from a statistical perspective. For instance, understanding how different data sources contribute to
specific model capabilities (e.g., models trained on larger proportions of code tend to empirically
exhibit stronger programming abilities) is crucial for optimizing data mixtures to achieve desired
performance, in both the pre-training and post-training phases (Xie et al., 2023). Furthermore,
as suggested by researchers like Ilya Sutskever, relying solely on existing human-generated data
may already be insufficient (Sutskever, 2024), and therefore the generation of high-quality synthetic
data becomes vital. This is a task where statistical principles for experimental design and data
augmentation could prove invaluable.

Furthermore, the variability and uncertainty stemming from the stochastic nature of LLMs de-
mand statistical analysis. Because LLM outputs are inherently variable, understanding and quan-
tifying the uncertainty associated with their responses is critical. This is especially true in scientific
applications where reproducibility is required, and in high-stakes decision-making, such as medical
diagnostics, where the model’s confidence level can drastically influence subsequent actions. Statis-

5While other objectives exist (e.g., masked language modeling in BERT) and new approaches are emerging (e.g.,
diffusion models for text), the core task remains generative.
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tics offers a rich toolkit for analyzing variability, uncertainty, and miscalibration, and subsequently
reducing them.

Conversely, the stochastic generation process not only presents challenges but also enables novel
statistical techniques. Watermarking, for instance, leverages the model’s probabilistic token gener-
ation to embed statistically detectable signals based on pseudorandomness, allowing for provable
distinction between AI-generated and human-written text, potentially without compromising qual-
ity (Kirchenbauer et al., 2023). Another example is LLM alignment via reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022), which uses the Bradley–Terry model (Bradley and
Terry, 1952) to represent LLMs’ preference distributions. Such techniques would be impossible if
LLM generation were deterministic.

The need for statistical foundations is further amplified by the unprecedented breadth of LLM
applications. LLMs are being integrated into coding assistants, writing tools, autonomous agents,
scientific discovery platforms, medical information retrieval, and countless other domains. This
rapid and widespread deployment into diverse, often novel environments constantly surfaces new
challenges related to privacy, copyright, attribution, fairness, ethical considerations, and the need
for mechanisms like machine unlearning (Cao and Yang, 2015) to remove specific sensitive knowl-
edge. While addressing these complex issues for the trustworthy use of LLMs undoubtedly requires
interdisciplinary collaboration, statistical insights and methodologies are particularly crucial and
effective in developing solutions, with the additional advantage of typically being computationally
light.

3 LLMs as Black-box Models

The data-centric and stochastic characteristics of LLMs already present a compelling case for in-
corporating statistical methodologies into their development and application. Nevertheless, one
might wonder whether non-statistical approaches—for instance, purely mechanistic, first-principles
methods—could also achieve similar goals. In this section, we deepen the argument by positing that
for many crucial challenges surrounding LLMs, statistics may not merely be useful but often the
most viable, or perhaps the only practical, path forward. This necessity arises primarily from the
profound black-box nature of LLMs.

Whether a field leans heavily on statistical methodology often depends on the extent to which
its underlying mechanisms are understood. Fields like classical physics, where fundamental princi-
ples are generally well-established, can often rely on deductive mathematical modeling to predict
system behavior. While empirical data remains crucial for validation, data analysis often serves to
confirm theories or estimate parameters within known models. Conversely, in fields like biology,
particularly neuroscience, a vast number of unknowns and high-dimensional interactions render the
internal workings inaccessible or too complex to model from first principles. Consequently, when
confronting these kinds of black-box situations, researchers typically rely heavily on statistical infer-
ence to discern patterns, test hypotheses, and build useful predictive or explanatory models directly
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from observational data, even without a complete mechanistic understanding. It is arguably this
difference in mechanism transparency, among other factors, that contributes to the reality that
statistical methodologies are more prevalent in biomedical research than in physics.

We argue that LLMs, in their current state and likely trajectory, fall firmly into the category of
complex systems where the black-box nature necessitates a reliance on statistical approaches. Their
status as black boxes is likely a persistent feature arising from the following two factors:

Inherent complexity and huge scale. LLMs are among the most complex computational sys-
tems ever built. The Transformer architecture, upon which almost all proprietary LLMs are based,
involves intricate compositions of a variety of components such as multi-head attention, layer nor-
malization, gating mechanisms, and nonlinear transformations, interacting across billions to nearly
trillions of parameters (Vaswani et al., 2017). Indeed, the sheer size of LLMs appears necessary. On
the theoretical front, Bubeck and Sellke (2021) showed that neural networks satisfying certain regu-
larity conditions necessitate a vast number of parameters. Empirically, scaling laws further confirm
that performance consistently improves with model size (Kaplan et al., 2020). This immense scale
makes a detailed, analytical understanding from bottom-up principles practically intractable.

Non-uniqueness of architectures and optimizers. The black-box nature is compounded by
the fact that there is not one single “correct” architecture for LLMs achieving high performance.
While the Transformer has been dominant, simplified Transformer and mixture-of-experts Trans-
former variants are shown empirically to work well (He and Hofmann, 2024; Dai et al., 2024).
Moreover, non-attention-based architectures like state-space models (Mamba) (Gu and Dao, 2024),
recurrent structures (RWKV) (Peng et al., 2023), and even potentially large-scale LSTMs with
sufficient memory show promise or competitive results (Schmidt, 2023). Similarly, various op-
timization algorithms—including Adam (Kingma and Ba, 2015), SGD, AdamW (Loshchilov and
Hutter, 2019), Shampoo (Gupta et al., 2018), and the more recent Muon optimizer (Jordan et al.,
2024)—have been effective in training these massive models. This lack of a uniquely optimal design
for LLMs is reflective of the empirical trial-and-error approach driving both architectural and al-
gorithmic innovations. Indeed, this empirical flexibility fosters co-adaptation between architectures
and optimizers. Interestingly, a popular hypothesis within the AI community posits that Adam’s
effectiveness may partially result from neural architectures being inadvertently “overfitted” to its
optimization characteristics (Orabona, 2020).

The confluence of immense complexity, necessarily large scale, and non-unique design makes it
highly improbable that we can understand the behavior of LLMs from neatly closed-form laws in
the way physicists often model physical phenomena. LLMs are thus de facto black boxes and likely
to remain so for the foreseeable future (see Section 5 for elaboration). As Stephen Wolfram has
argued, complex systems may sometimes be computationally irreducible, meaning their behavior
cannot be predicted by simple, interpretable rules (Wolfram and Gad-el Hak, 2003). Consequently,
attempts to build comprehensive mathematical theories to unveil the inner workings of LLMs are
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likely to face fundamental challenges, if not prove impossible in practice.6

When dealing with a complex, stochastic black-box system where the true underlying process
is unknown or intractable, we must resort to studying the system through its inputs and outputs,
along with any available intermediate measurements and potentially latent factors. This necessitates
the use of approximate and data-driven models to capture observed behaviors. Such models, built
from data to approximate an unknown or intractable underlying process, are inherently statistical.
The resulting statistical models are, in the spirit of George Box, necessarily wrong in the sense
of being incomplete, yet potentially useful for prediction, understanding correlations, and guiding
development (Box, 1976). Indeed, this perspective resonates with Alexei Efros’ call to treat AI
research more like experimental biology, focusing on using statistical methodology to make progress
based on empirical observation, hypothesis testing, and data-driven modeling (Efros, 2023).

4 Statistical Topics on LLMs

In this section, we illustrate a number of research directions where we believe statistical principles
can directly enhance both the development and application of LLMs. These directions either exploit
the generative and data-driven essence of LLMs (Section 2) or take the viewpoint of LLMs as complex
black-box systems (Section 3). This list is not exhaustive, reflecting the dynamic nature of the field,
but serves to highlight the breadth of opportunities, and we anticipate that additional statistical
challenges will arise as LLM capabilities and deployment settings continue to evolve. Moreover,
many of these research areas demand modest computational resources, often requiring only API
access to existing models, thus making them accessible to many researchers.

LLM alignment. Alignment is the process of steering AI models toward human preferences, in-
tended goals, and ethical principles. Because human preferences and ethics can often be represented
quantitatively via statistical models, statistical principles naturally arise for developing principled
and trustworthy alignment methods.

• Alignment from human feedback: The technique of RLHF involves training a reward model
based on human comparisons of LLM outputs (Ouyang et al., 2022). Formally, the preference
distribution between two possible responses y, y′ to a prompt x is modeled using the Bradley–
Terry model:

P(y is preferred over y′|x) = er(x,y)

er(x,y) + er(x,y′)
,

where the reward r(x, y) is trained from pairwise comparison data from human labelers using
maximum likelihood estimation. The LLM is then fine-tuned using the reward model to
maximize the expected reward, subject to a constraint that penalizes excessive deviation from

6For completeness, we recognize efforts in mechanistic interpretability that aim to shed light on internal computa-
tions. These investigations, however, are computationally intensive and often yield localized or partial insights rather
than a comprehensive, predictive approach to demystifying the entire system (Elhage et al., 2021).
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the reference model. Owing to the stochasticity inherent in the Bradley–Terry model with
noisy human feedback, this process is statistical in nature. This offers numerous opportunities
for statisticians to analyze reference model misspecification, sample efficiency of preference
data collection, and the generalization of learned preferences (Zhu et al., 2023; Chakraborty
et al., 2024; Swamy et al., 2025; Ye et al., 2025). For example, recent studies demonstrate
that the current approaches to RLHF inadequately represent the full spectrum of human
preferences and can introduce statistical bias during fine-tuning (Liu et al., 2025a; Xiao et al.,
2024).

• Privacy and machine unlearning: LLMs trained on vast datasets may inadvertently memo-
rize and expose sensitive or copyrighted information. Differential privacy provides a rigorous
mathematical framework that offers statistical guarantees against information leakage by in-
troducing controlled noise during training (Dwork et al., 2006). A critical statistical consid-
eration, therefore, is to optimize the trade-off between privacy protection and model utility,
particularly for proprietary LLMs. Recent research has focused on enhancing this trade-off
by implementing differential privacy during the fine-tuning phase of pre-trained models that
were initially trained on public data (Li et al., 2022). However, further research is needed
to meet the level of trade-off required by proprietary LLMs. A related area is machine un-
learning, which aims to efficiently eliminate the influence of specific data points (e.g., due
to privacy requests or copyright concerns) without retraining (Cao and Yang, 2015). This
approach presents significant statistical challenges in precisely defining and verifying effective
“forgetting” while preserving model capabilities (Yao et al., 2024; Zhang et al., 2024b).

• Fairness: LLMs can inherit and amplify societal biases present in their training data, leading
to unfair or discriminatory outputs across different demographic groups (e.g., based on gender,
race, religion) (Santurkar et al., 2023; Kotek et al., 2023). While addressing fairness is a com-
plex socio-technical problem, statistics provides indispensable tools for defining, measuring,
and mitigating bias. This includes developing quantitative fairness metrics, auditing models
for systematic biases using statistical tests, and incorporating fairness considerations into var-
ious stages of the LLM pipeline—from data curation and pre-training objectives to alignment
processes or even directly during generation of outputs (Zhang et al., 2024a; Chakraborty
et al., 2024).

Exploiting the generative interface. The autoregressive nature of LLMs, specifically, next-
token prediction, allows one to treat LLMs as a black-box machine that outputs a multinomial
distribution, which is used to sample the next token. This probabilistic viewpoint allows us to
develop statistical methods by leveraging the sampling properties of multinomial distributions,
without needing to delve into the complexity of how the Transformer architecture computes the
distributions.

• Watermarking: To distinguish LLM-generated text from human-written content, watermark-
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ing techniques embed statistically detectable signals into the generation process based on
cryptographic pseudorandomness (Kirchenbauer et al., 2023; Aaronson, 2023). Formally, the
next token wt+1 is decoded as S(Pt, ζt), where the decoder S is deterministic or can incorpo-
rate sampling randomness, Pt is the multinomial distribution for drawing the (t+ 1)st token,
and ζt is a pseudorandom variable that can be computed from the preceding context and a
private key. The detection problem can be naturally framed as statistical hypothesis testing,
based on the observation that when text is not watermarked (under the null hypothesis),
wt+1 is independent of S(Pt, ζt), while when the text is watermarked (under the alternative
hypothesis), wt+1 = S(Pt, ζt). The latter case necessarily induces dependence between the
tokens and pseudorandom variables, even without knowledge of the multinomial distributions.
This framework opens avenues for applying statistical decision theory to design watermarking
schemes and detection rules that achieve optimal or near-optimal detection performance while
preserving text quality (Li et al., 2025). A significant practical challenge involves ensuring
robustness against adversarial modifications, such as paraphrasing or translation, necessitat-
ing the development of schemes with provable statistical guarantees under such attacks (Pang
et al., 2024; Li et al., 2024a). Additionally, there is substantial interest in leveraging water-
marking techniques for other purposes, such as detecting data misappropriation (Cai et al.,
2025).

• Speculative Sampling: This technique accelerates text generation of LLMs by employing a
smaller, faster “draft” model to propose candidate tokens, which are subsequently accepted
or rejected by the larger “target” model based on a comparison of their respective output
distributions (Leviathan et al., 2023; Chen et al., 2023). To add detail on speculative sam-
pling, let Pt and Qt denote the multinomial distributions of the larger and smaller LLMs,
respectively, for predicting the tth token—assuming the index of the last token in the prefix
is 0. Denote by x1, . . . , xT the tokens sequentially proposed by the smaller LLM conditioned
on the preceding tokens. Then, beginning from t = 1, the larger LLM accepts token xt with
probability min{1, Pt(xt)/Qt(xt)}, and terminates the process when the first rejection occurs.
The final step of speculative sampling appends one additional token for this epoch by sampling
from max{0,Pt −Qt} after normalization, where t denotes the position at which the smaller
LLM’s proposed token is first rejected. As is clear, speculative sampling is a form of rejection
sampling that achieves the maximum coupling between the prediction probabilities of the two
LLMs.

The rationale behind this technique is that, for the larger LLM, evaluating the probability
of a proposed token is computationally more efficient than decoding a token, which typically
requires processing all possible tokens in the (extensively large) vocabulary. Consequently,
the efficiency gain depends critically on the acceptance rate, which is inherently a statistical
quantity depending on how the target LLM’s probability distributions align with those of
the smaller one. Statistical analysis is crucial for optimizing the trade-off between the com-
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putational cost of the draft model and the expected speedup from the acceptance rate. For
instance, this statistical technique has been implemented in DeepSeek V3 for efficient multi-
token prediction (Li et al., 2024b; Liu et al., 2024) and can be integrated with watermarking
(Hu and Huang, 2024). More opportunities exist for incorporating statistical insights into
adaptive variations of this technique and integrating it with other methods.

• Tokenization: Tokenization breaks down text into discrete tokens to form the categories from
which LLMs sample. Tokenization fundamentally impacts the statistical properties of the
data fed into the model and the distributions it outputs. However, most current tokenizers
(e.g., byte-pair encoding (Gage, 1994)) are based on heuristic compression algorithms and
lack statistical guarantees. There is a need for statistically principled tokenization methods
that optimize for criteria like information rate or minimal sequence length across diverse text
types. Furthermore, statistical analysis is required to understand how tokenization efficiency
and potential induced biases vary across different languages, domains (e.g., code, scientific
literature), and demographic groups (Phan et al., 2024; Yang et al., 2024).

Assessment of LLM behavior. Understanding and quantifying the reliability, limitations, and
capabilities of LLMs presents significant challenges, exacerbated by their stochastic and black-box
nature. This inherently necessitates statistical modeling for assessing LLM behavior with confidence
statements.

• Uncertainty quantification and calibration: LLM outputs exhibit uncertainty stemming from
both inherent randomness in the generation process and knowledge limitations (Yadkori et al.,
2024). For trustworthy applications, particularly in high-stakes scenarios, quantifying the un-
certainty of LLM outputs becomes crucial. Among various approaches addressing uncertainty,
conformal prediction has emerged as a statistically rigorous and flexible methodology for pro-
viding prediction sets with distribution-free coverage guarantees—a characteristic particularly
suited to the black-box nature of LLMs (Mohri and Hashimoto, 2024; Cherian et al., 2024).
Furthermore, the utility of uncertainty estimates depends on calibration—the degree to which
a model’s expressed confidence aligns with its actual accuracy. Given that aligned LLMs are
often miscalibrated (Achiam et al., 2023), developing methods that simultaneously quantify
uncertainty and restore calibration is an important research direction (Huang et al., 2024;
Xiao et al., 2025; Wang et al., 2025; Liu et al., 2025c).

• Evaluation: Assessing LLM capabilities across diverse tasks using benchmarks such as MMLU
(Hendrycks et al., 2021), TruthfulQA (Lin et al., 2022), and GSM8K (Cobbe et al., 2021) is
essential not only for tracking progress but also for guiding AI development (Silver and Sutton,
2025; Yao, 2025; Gao et al., 2025). However, the probabilistic and complex nature of LLMs
introduces substantial statistical challenges in evaluation. Statistically grounded methods are
required to quantify the variance and reliability of evaluation scores (Miller, 2024; Polo et al.,
2024), with statistical models such as item response theory being employed for this purpose
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(Madaan et al., 2024). Nevertheless, this area faces an “evaluation crisis,” where reported
benchmark scores frequently inflate perceived capabilities, partly due to evaluation gaming—
the process of optimizing models specifically for benchmark performance (Khomenko, 2025).
This phenomenon bears resemblance to statistical issues such as p-hacking. Consequently, we
need rigorous statistical principles for robust measurement and protection against overfitting
to evaluation datasets.

The central role of data. The capabilities of LLMs are fundamentally determined by the data
used in pre-training and fine-tuning (Yue et al., 2025). This gives rise to numerous statistical
challenges related to understanding and optimizing the relationship between data characteristics
and model performance.

• Data mixture and attribution: An essential challenge is determining the optimal composition
of diverse data sources (e.g., web text, books, code, scientific papers) to train an LLM that
achieves specific desired capabilities, often under resource constraints (Xie et al., 2023). While
heuristic understanding exists—for instance, that a higher proportion of code in the training
data generally leads to stronger coding abilities—the complex, high-dimensional relationship
between data mixture and emergent abilities is largely unknown (Thrush et al., 2024). Statis-
tical modeling, particularly regression-based approaches, offers a simple yet effective approach
to investigating these dependencies (Liu et al., 2025b). Closely related to data mixture is the
problem of data attribution, which seeks to identify the specific training samples that most
influence a particular model output or behavior. Data attribution is crucial for addressing
legal concerns like copyright infringement and enhancing transparency, but poses significant
challenges due to the black-box nature of LLMs. Statistical techniques such as influence func-
tions (Koh and Liang, 2017) and kernel approximation (Park et al., 2023) have been used
to address these challenges for relatively small-scale models, yet significant research effort is
needed to adapt and scale these methods effectively for large LLMs.

• Synthetic data and model collapse: As the scale of LLMs continues to grow, relying solely on
existing human-generated data (“the fossil fuel of AI,” as put by Ilya Sutskever in his keynote
speech at NeurIPS 2024) may become insufficient or cost-prohibitive. Consequently, synthetic
data is becoming increasingly vital for its scalability and cost-effectiveness (Eldan and Li,
2023; Adler et al., 2024; Yang et al., 2025; Tian and Shen, 2025). Statistics offers valuable
tools for guiding the synthetic data generation process, including methods for assessing data
quality, controlling distributional properties to match desired targets, and designing efficient
data augmentation strategies (Angelopoulos et al., 2023). However, a major risk arises from
recursively training models on their own synthetic outputs, which can lead to a degradation of
model quality, loss of diversity, and divergence from the true data distribution—a phenomenon
termed model collapse (Shumailov et al., 2024). Understanding the underlying mechanisms
driving model collapse and developing statistically sound methodologies to mitigate it, po-
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tentially by adaptively mixing real and synthetic data or by imposing specific distributional
constraints, represents a promising research direction where statistical insights are needed
(Gerstgrasser et al., 2024; Dey and Donoho, 2024).

• Scaling laws: Scaling laws are empirical observations that quantitatively relate an LLM’s per-
formance to factors such as the size of the training dataset, the number of model parameters,
and the computational resources allocated for training (Kaplan et al., 2020). Among the
various forms of scaling laws, Hoffmann et al. (2022) demonstrated that

L = E +
A

Nα
+

B

Dβ

effectively captures how the pre-training loss L depends on the number N of model param-
eters and the number D of training tokens, where E denotes the entropy of natural text
and A,α,B, and β are constants. These laws offer significant practical value by enabling re-
searchers to predict potential performance gains from increased scale, thereby guiding resource
allocation strategies for training progressively larger models without requiring exhaustive ex-
perimentation (Achiam et al., 2023). Scaling laws are fundamentally statistical, as they model
empirically observed relationships between the scale of training resources and model perfor-
mance. From a theoretical perspective, however, scaling laws present intriguing questions for
statisticians. The observation that model performance continues to improve with increasing
model size N , seemingly without saturation even when N becomes extremely large, challenges
classical statistical learning theories that predict model performance saturation once complex-
ity exceeds the intrinsic dimensionality of the data. Investigating the statistical underpinnings
of these empirical laws, potentially through the lens of nonparametric estimation or approx-
imation theory in high dimensions, may yield deeper insights into the learning dynamics of
LLMs and potentially lead to novel statistical methodologies.

Other research directions. The rapidly evolving landscape of LLMs continues to generate novel
statistical challenges that extend beyond the aforementioned categories, many of which remain in-
completely formulated from a statistical perspective and thus present opportunities for contribu-
tions from our community. In the development of small LLMs, which are needed for deployment
in edge devices, empirical evidence has revealed that knowledge distillation from larger LLMs of-
ten outperforms training from scratch (Guo et al., 2025), which calls for developing statistically
efficient distillation methods. Accordingly, there is a need for owners of proprietary LLMs to de-
velop sampling strategies that limit the effectiveness of distillation by business competitors (Savani
et al., 2025). The recent emergence of reasoning models that employ latent intermediate steps via
chain-of-thought (Wei et al., 2022) suggests that latent variable modeling might be valuable for un-
derstanding the mechanisms underlying the effectiveness of latent reasoning outputs (Muennighoff
et al., 2025). Furthermore, the very recent advent of diffusion-based LLMs presents an opportunity
for statistical analysis to elucidate the fundamental comparisons between the autoregressive and
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diffusion-based strategies (Nie et al., 2025; Dou et al., 2024). Moreover, as LLMs are frequently
deployed as evolving API-based services, the development of statistically grounded techniques to
detect unannounced updates and consequent behavioral shifts is critical for ensuring the reliability
of downstream applications (Dima et al., 2025). Finally, the modification of multinomial distribu-
tions for next-token prediction through a Bayesian perspective represents another frontier where
statistical insights can directly inform LLM development (Zhuang et al., 2025).

5 Discussion

The past decade and a half, starting with the advent of AlexNet, has witnessed a remarkable
advancement of purely predictive algorithms, with LLMs emerging as perhaps the most striking
example. While LLMs share many defining aspects of purely predictive algorithms, their versatility
in handling a variety of data types—especially unstructured text—and flexibility in applications
across unprecedentedly diverse domains clearly distinguish LLMs from earlier purely predictive
models, including pre-Transformer neural networks used in classification. Indeed, it may be more
accurate to consider LLMs as enabling a new data-processing paradigm that converts and unifies
diverse text-based inputs into a numeric form that can then be transformed and generated back into
text, creating new forms of data amenable to analysis. Analogous to how genome-wide association
studies once catalyzed the development of high-dimensional statistics, there are good reasons to
believe that the continued progress of LLMs will open up an entire class of problems for which
statistical methodologies will thrive.

Even taking a narrower scope, we argue further that classical inferential statistical principles—
particularly those aligned with the “data-modeling” culture (Breiman, 2001) and the “estimation and
attribution” perspective (Efron, 2020)—are becoming increasingly relevant for LLMs. The inher-
ently stochastic nature of LLM generation makes statistical approaches suitable for quantifying and
understanding uncertainty and variability. Moreover, while their architecture is in principle known,
the stronger case for a statistical viewpoint emerges because the nearly trillions of parameters that
LLMs operate on lack straightforward interpretation. Indeed, when faced with a system exhibiting
black-box complexity, approximating its behavior through data-driven, testable, and refutable sta-
tistical models is perhaps the only tractable and effective approach, as statistical methods have a
long history of proving effective even when underlying mechanisms are not fully understood. This
black-box complexity requires that we formulate solutions for some use cases of LLMs—especially
those requiring stability, robustness, and interpretability—using smaller, interpretable probabilistic
models or inferring relationships between interpretable factors. Indeed, current (and most likely
future) approaches—whether mitigating alignment biases, verifying content origin, quantifying the
reliability of generated content, or assessing the influence of specific data subsets—often involve
statistical reasoning, hypothesis testing, or parameter estimation within a relevant probabilistic
framework.

One may hope that the internal workings of LLMs will eventually become transparent and
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amenable to purely mechanistic analysis (Elhage et al., 2021), which would perhaps eliminate the
need for statistical approaches to the problems we present in Section 4. Yet strong evidence suggests
otherwise.

Hypothesis of perpetual black-box state-of-the-art models. A crucial argument support-
ing our claim is that state-of-the-art models are constantly evolving, driven by empirical gains
achieved through increasing scale, architectural modifications often optimized for hardware effi-
ciency, and new training heuristics. Consequently, the theoretical understanding of these models
lags significantly behind practitioner-led advancements, a trend observable since the introduction
of AlexNet (Su, 2024), leading to a widening gap between what can be rigorously understood and
the capabilities of the latest LLMs.

The persistent black-box status of LLMs suggests that a single, unifying “grand statistical foun-
dation for LLMs” is unlikely to emerge. Consequently, statistical research in this area will likely
proceed in a bottom-up fashion, driven by the need to solve specific problems and address particular
applications. This problem-driven approach is expected to yield a mosaic of specialized statistical
frameworks and techniques tailored to distinct challenges. While this implies diversity in method-
ology, our personal experience working on several LLM-related problems shows that fundamental
statistical thinking and inferential reasoning remain consistently crucial and effective across different
contexts. This lack of a single unifying foundation presents a wealth of research opportunities for
statisticians with varied skillsets.

Although this paper primarily focuses on inferential or classical statistics, this emphasis does
not imply that statistical research on LLMs should be exclusively inferential. Rather, progress will
likely require a blend of both inferential and predictive statistical approaches. Indeed, the boundary
between these two statistical cultures is often blurry, especially in practice. Furthermore, advancing
statistical methodology in LLM research requires recognizing the interplay between statistics and
data science, particularly the significant engineering component inherent in the latter (Donoho,
2017). Embracing data science practices, such as robust data and code sharing, will also be vital for
accelerating progress across this diverse research landscape and maximizing the collective impact of
statistical contributions (Donoho, 2024).

While we have argued for the utility and necessity of statistical contributions to LLM develop-
ment and application, we have not addressed the matter of timing. It remains uncertain whether
generative AI, particularly LLMs, will lead to artificial general intelligence. However, it appears
highly probable that these technologies will constitute a lasting and significant component of the
future AI landscape. This presents a significant and timely opportunity for the statistics commu-
nity (Lin et al., 2025). However, the risk of missing the chance to shape these AI technologies
might arise if our community delays active engagement, since researchers in other fields, such as
computer science—where younger generations often receive substantial statistical training—may de-
velop these solutions on their own. While these contributions would still leverage statistical ideas,
they might adopt a different flavor or lack the rigor that principled statistical approaches could
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provide. Waiting for the field of LLMs to “stabilize” or for problems to become “well-defined” risks
allowing non-statistical or less-statistically grounded methodologies to occupy domains where prin-
cipled statistical approaches would be more appropriate. However, the potential “equilibrium” is
not necessarily unique. Principled statistical approaches, if they come late, might not necessarily
replace less-statistically grounded approaches that arrive earlier, especially in a field like LLMs in-
volving significant engineering, scientific, and business considerations. Therefore, it is crucial for
statisticians to be proactive to ensure that the development and application of LLMs benefit fully
from the depth and rigor of statistical science.
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