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Abstract
In	the	past	decade,	differential	privacy	has	seen	remark-
able	success	as	a	rigorous	and	practical	formalization	of	
data	 privacy.	 This	 privacy	 definition	 and	 its	 divergence	
based	 relaxations,	however,	have	 several	acknowledged	
weaknesses,	 either	 in	 handling	 composition	 of	 private	
algorithms	 or	 in	 analysing	 important	 primitives	 like	
privacy	 amplification	 by	 subsampling.	 Inspired	 by	 the	
hypothesis	testing	formulation	of	privacy,	this	paper	pro-
poses	a	new	relaxation	of	differential	privacy,	which	we	
term	‘f-	differential	privacy’	(f-	DP).	This	notion	of	privacy	
has	a	number	of	appealing	properties	and,	in	particular,	
avoids	difficulties	associated	with	divergence	based	relax-
ations.	First,	f-	DP	faithfully	preserves	the	hypothesis	test-
ing	interpretation	of	differential	privacy,	thereby	making	
the	privacy	guarantees	easily	interpretable.	In	addition,	f-	
DP	allows	for	lossless	reasoning	about	composition	in	an	
algebraic	fashion.	Moreover,	we	provide	a	powerful	tech-
nique	to	import	existing	results	proven	for	the	original	dif-
ferential	privacy	definition	to	f-	DP	and,	as	an	application	
of	 this	 technique,	 obtain	 a	 simple	 and	 easy-	to-	interpret	
theorem	 of	 privacy	 amplification	 by	 subsampling	 for	 f-	
DP.	In	addition	to	the	above	findings,	we	introduce	a	ca-
nonical	single-	parameter	family	of	privacy	notions	within	
the	f-	DP	class	that	is	referred	to	as	‘Gaussian	differential	
privacy’	 (GDP),	 defined	 based	 on	 hypothesis	 testing	 of	
two	shifted	Gaussian	distributions.	GDP	is	the	focal	pri-
vacy	definition	among	the	family	of	f-	DP	guarantees	due	
to	a	central	limit	theorem	for	differential	privacy	that	we	
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1 |  INTRODUCTION

Modern	statistical	analysis	and	machine	learning	are	overwhelmingly	applied	to	data	concerning	
people.	Valuable	data	sets	generated	from	personal	devices	and	online	behaviour	of	billions	of	
individuals	contain	data	on	location,	web	search	histories,	media	consumption,	physical	activity,	
social	networks	and	more.	This	is	on	top	of	continuing	large-	scale	analysis	of	traditionally	sen-
sitive	data	records,	including	those	collected	by	hospitals,	schools	and	the	Census.	This	reality	
requires	the	development	of	tools	to	perform	large-	scale	data	analysis	in	a	way	that	still	protects	
the	privacy	of	individuals	represented	in	the	data.

Unfortunately,	the	history	of	data	privacy	for	many	years	consisted	of	ad	hoc	attempts	at	
‘anonymizing’	 personal	 information,	 followed	 by	 high	 profile	 de-	anonymizations.	 This	 in-
cludes	 the	 release	 of	 AOL	 search	 logs,	 de-	anonymized	 by	 the	 New York Times	 (Barbaro	 &	
Zeller,	 2006),	 the	 Netflix	 Challenge	 data	 set,	 de-	anonymized	 by	 Narayanan	 and	 Shmatikov	
(2008),	 the	 realization	 that	 participants	 in	 genome-	wide	 association	 studies	 could	 be	 iden-
tified	 from	aggregate	statistics	 such	as	minor	allele	 frequencies	 that	were	publicly	 released	
(Homer	et al.,	2008),	and	the	reconstruction	of	individual-	level	census	records	from	aggregate	
statistical	releases	(Abowd,	2018).

Thus,	we	urgently	needed	a	rigorous	and	principled	privacy-	preserving	framework	to	prevent	
breaches	of	personal	 information	 in	data	analysis.	 In	 this	context,	differential privacy	has	put	
private	data	analysis	on	firm	theoretical	foundations	(Dwork	et al.,	2006a,b).	This	definition	has	
become	tremendously	successful;	in	addition	to	an	enormous	and	growing	academic	literature,	it	
has	been	adopted	as	a	key	privacy	technology	by	Google	(Erlingsson	et al.,	2014),	Apple	(Apple,	
2017),	Microsoft	(Ding	et al.,	2017)	and	the	US	Census	Bureau	(Abowd,	2018).	The	definition	of	
this	concept	involves	privacy	parameters	ɛ ≥ 0	and	0 ≤ δ ≤ 1.

prove.	More	precisely,	the	privacy	guarantees	of	any	hy-
pothesis	testing	based	definition	of	privacy	(including	the	
original	differential	privacy	definition)	converges	to	GDP	
in	the	limit	under	composition.	We	also	prove	a	Berry–	
Esseen	style	version	of	the	central	limit	theorem,	which	
gives	 a	 computationally	 inexpensive	 tool	 for	 tractably	
analysing	 the	 exact	 composition	 of	 private	 algorithms.	
Taken	 together,	 this	 collection	 of	 attractive	 properties	
render	f-	DP	a	mathematically	coherent,	analytically	trac-
table	 and	 versatile	 framework	 for	 private	 data	 analysis.	
Finally,	we	demonstrate	the	use	of	the	tools	we	develop	
by	giving	an	improved	analysis	of	the	privacy	guarantees	
of	noisy	stochastic	gradient	descent.

K E Y W O R D S

Blackwell	theorem,	central	limit	theorem,	composition,	
differential	privacy,	primal-	dual	perspective,	privacy	
amplification,	private	stochastic	gradient	descent,	subsampling,	
trade-	off	function
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Definition 1	 (Dwork	et al.,	2006a,	b).	A	randomized	algorithm	M	that	takes	as	input	a	data	set	
consisting	of	individuals	is	(ɛ, δ)-	differentially	private	(DP)	if	for	any	pair	of	data	sets	S, S′	
that	differ	in	the	record	of	a	single	individual,	and	any	event	E,

When	δ = 0,	the	guarantee	is	simply	called	ɛ-	DP.

In	this	definition,	data	sets	are	fixed	and	the	probabilities	are	taken	only	over	the	randomness	
of	 the	 mechanism.	 In	 particular,	 the	 event	 E	 can	 take	 any	 measurable	 set	 in	 the	 range	 of	 M.	
To	achieve	differential	privacy,	a	mechanism	is	necessarily	randomized.	For	example,	consider	
the	 problem	 of	 privately	 releasing	 the	 average	 cholesterol	 level	 of	 individuals	 in	 the	 data	 set	
S = (x1, …, xn),	where	xi	corresponds	to	the	cholesterol	level	of	individual	i.	A	privacy-	preserving	
mechanism	may	take	the	form

The	level	of	the	noise	has	to	be	large	enough	to	mask	the	characteristics	of	any	individual's	cho-
lesterol	 level,	 while	 not	 being	 too	 large	 to	 distort	 the	 population	 average	 for	 accuracy	 purposes.	
Consequently,	the	probability	distributions	of	M(S)	and	M(S′)	are	close	to	each	other	for	any	data	
sets	S, S′	that	differ	in	only	one	individual	record.

Differential	privacy	is	most	naturally	defined	through	a	hypothesis	testing	problem	from	the	
perspective	of	an	attacker	who	aims	to	distinguish	S	from	S′	based	on	the	output	of	the	mech-
anism.	This	 statistical	viewpoint	was	 first	observed	by	Wasserman	and	Zhou	 (2010)	and	 then	
further	developed	by	Kairouz	et al.	(2017),	which	is	a	direct	inspiration	for	our	work.	In	short,	
consider	the	hypothesis	testing	problem

and	call	Alice	the	only	individual	that	is	in	S	but	not	S′.	As	such,	rejecting	the	null	hypothesis	cor-
responds	to	the	detection	of	the	absence	of	Alice,	whereas	accepting	the	null	hypothesis	means	to	
detect	the	presence	of	Alice	in	the	data	set.	Using	the	output	of	an	(ɛ, δ)-	DP	mechanism,	the	power	
of	any	test	at	significance	level	0 < α < 1	has	an	upper	bound	of	eɛα + δ.	This	bound	is	only	slightly	
larger	than	α	provided	that	ɛ, δ	are	small	and,	therefore,	any	test	is	essentially	powerless.	Put	dif-
ferently,	differential	privacy	with	small	privacy	parameters	protects	against	any	 inferences	of	 the	
presence	of	Alice,	or	any	other	individual,	in	the	data	set.

Despite	its	apparent	success,	there	are	good	reasons	to	want	to	relax	the	original	definition	of	
differential	privacy,	which	has	led	to	a	long	line	of	proposals	for	such	relaxations.	The	most	im-
portant	shortcoming	is	that	(ɛ, δ)-	DP	does	not	tightly	handle	composition.	Composition	concerns	
how	privacy	guarantees	degrade	under	repetition	of	mechanisms	applied	to	the	same	data	set,	
rendering	the	design	of	differentially	private	algorithms	modular.	Without	compositional	prop-
erties,	it	would	be	near	impossible	to	develop	complex	differentially	private	data	analysis	meth-
ods.	Although	it	has	been	known	since	the	original	papers	defining	differential	privacy	(Dwork	
et al.,	2006a,b)	that	the	composition	of	an	(ɛ1, δ1)-	DP	mechanism	and	an	(ɛ2, δ2)-	DP	mechanism	
yields	an	(ɛ1 + ɛ2, δ1 + δ2)-	DP	mechanism,	the	corresponding	upper	bound	e�1+�2� + �1 + �2	
on	the	power	of	any	test	at	significance	level	α	no	longer	tightly	characterizes	the	trade-	off	be-
tween	significance	level	and	power	for	the	testing	between	S	and	S′.	In	Dwork	et al.	(2010),	the	

(1)ℙ
[
M(S) ∈ E

] ≤ e�ℙ
[
M(S�) ∈ E

]
+ �.

M(S) =
x1 +⋯ + xn

n
+ noise.

(2)H0: the underlying data set is S versus H1: the underlying data set is S
′
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authors	gave	an	 improved	composition	 theorem,	but	 it	 fails	 to	 capture	 the	correct	hypothesis	
testing	trade-	off.	This	is	for	a	fundamental	reason:	(ɛ, δ)-	DP	is	mis-	parameterized	in	the	sense	
that	 the	 guarantees	 of	 the	 composition	 of	 (ɛi,  δi)-	DP	 mechanisms	 cannot	 be	 characterized	 by	
any	single	pair	of	parameters	(ɛ, δ).	Even	worse,	given	any	δ,	finding	the	smallest	parameter	ɛ	for	
composition	of	a	sequence	of	differentially	private	algorithms	is	computationally	hard	(Murtagh	
&	Vadhan,	2016),	and	so	in	practice,	one	must	resort	to	approximations.	Given	that	composition	
and	 modularity	 are	 first-	order	 desiderata	 for	 a	 useful	 privacy	 definition,	 these	 are	 substantial	
drawbacks	and	often	continue	to	push	practical	algorithms	with	meaningful	privacy	guarantees	
out	of	reach.

In	 the	 light	of	 this,	 substantial	 recent	effort	has	been	devoted	 to	developing	 relaxations	of	
differential	privacy	 for	which	composition	can	be	handled	exactly.	This	 line	of	work	 includes	
several	variants	of	‘concentrated	differential	privacy’	(Bun	&	Steinke,	2016;	Dwork	&	Rothblum,	
2016),	‘Rényi	differential	privacy’	(Mironov,	2017)	and	‘truncated	concentrated	differential	pri-
vacy’	(Bun	et al.,	2018a).	These	definitions	are	tailored	to	be	able	to	exactly	and	easily	track	the	
‘privacy	cost’	of	 compositions	of	 the	most	basic	primitive	 in	differential	privacy,	which	 is	 the	
perturbation	of	a	real	valued	statistic	with	Gaussian	noise.

While	 this	 direction	 of	 privacy	 relaxation	 has	 been	 quite	 fruitful,	 there	 are	 still	 several	
places	one	might	wish	for	improvement.	First,	these	notions	of	differential	privacy	no	longer	
have	hypothesis	testing	interpretations,	but	are	rather	based	on	studying	divergences	that	sat-
isfy	a	certain	information	processing	inequality.	There	are	good	reasons	to	prefer	definitions	
based	on	hypothesis	testing.	Most	immediately,	hypothesis	testing	based	definitions	provide	
an	easy	way	to	interpret	the	guarantees	of	a	privacy	definition.	More	fundamentally,	a	theo-
rem	due	to	Blackwell	(see	Theorem	2)	provides	a	formal	sense	in	which	a	tight	understand-
ing	of	 the	 trade-	off	between	type	I	and	type	II	errors	 for	 the	hypothesis	 testing	problem	of	
distinguishing	between	M(S)	and	M(S′)	contains	only	more	information	than	any	divergence	
between	the	distributions	M(S)	and	M(S′)	(so	long	as	the	divergence	satisfies	the	information	
processing	inequality).

Second,	certain	simple	and	fundamental	primitives	associated	with	differential	privacy—	
most	notably,	privacy amplification by subsampling	(Kasiviswanathan	et al.,	2011)—	either	fail	
to	apply	to	the	existing	relaxations	of	differential	privacy,	or	require	a	substantially	complex	
analysis	 (Wang	et al.,	 2018).	This	 is	 especially	problematic	when	analysing	privacy	guaran-
tees	of	stochastic	gradient	descent—	arguably	the	most	popular	present-	day	optimization	algo-
rithm—	as	subsampling	is	inherent	to	this	algorithm.	At	best,	this	difficulty	arising	from	using	
these	relaxations	could	be	overcome	by	using	complex	technical	machinery.	For	example,	it	
necessitated	Abadi	et al.	(2016)	to	develop	the	numerical	moments accountant	method	to	side-
step	the	issue.

1.1 | Our contributions

In	this	work,	we	introduce	a	new	relaxation	of	differential	privacy	that	avoids	these	issues	and	
has	other	attractive	properties.	Rather	than	giving	a	‘divergence’	based	relaxation	of	differential	
privacy,	we	start	fresh	from	the	hypothesis	testing	interpretation	of	differential	privacy,	and	ob-
tain	a	new	privacy	definition	by	allowing	the	full	trade-	off	between	type	I	and	type	II	errors	in	the	
simple	hypothesis	testing	problem	(2)	to	be	governed	by	some	function	f.	The	functional	privacy	
parameter	f	is	to	this	new	definition	as	(ɛ, δ)	is	to	the	original	definition	of	differential	privacy.	
Notably,	this	definition	that	we	term	f-	differential	privacy	(f-	DP)—	which	captures	(ɛ, δ)-	DP	as	a	
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special	case—	is	accompanied	by	a	powerful	and	elegant	toolkit	for	reasoning	about	composition.	
Here,	we	highlight	some	of	our	contributions:

1.1.1	 |	 An	algebra	for	composition

We	show	that	our	privacy	definition	is	closed	and	 tight	under	composition,	which	means	that	
the	 trade-	off	 between	 type	 I	 and	 type	 II	 errors	 that	 results	 from	 the	 composition	 of	 an	 f1-	DP	
mechanism	with	an	f2-	DP	mechanism	can	always	be	exactly	described	by	a	certain	function	f.	
This	function	can	be	expressed	via	f1	and	f2	in	an	algebraic	fashion,	thereby	allowing	for	losslessly	
reasoning	about	composition.	 In	contrast,	 (ɛ, δ)-	DP	or	any	other	privacy	definition	artificially	
restricts	itself	to	a	small	number	of	parameters.	By	allowing	for	a	function	to	keep	track	of	the	
privacy	guarantee	of	the	mechanism,	our	new	privacy	definition	avoids	the	pitfall	of	premature	
summarization	(to	quote	Holmes,	2019,	‘Premature	summarization	is	the	root	of	all	evil	in	statis-
tics’.)	in	intermediate	steps	and,	consequently,	yields	a	comprehensive	delineation	of	the	overall	
privacy	guarantee.	See	more	details	in	Section	3.

1.1.2	 |	 A	central	limit	phenomenon

We	define	a	single-	parameter	family	of	f-	DP	that	uses	the	type	I	and	type	II	error	trade-	off	in	dis-
tinguishing	the	standard	normal	distribution	 (0, 1)	from	 (�, 1)	for	μ ≥ 0.	This	is	referred	to	as	
Gaussian	differential	privacy	(GDP).	By	relating	to	the	hypothesis	testing	interpretation	of	differ-
ential	privacy	(2),	the	GDP	guarantee	can	be	interpreted	as	saying	that	determining	whether	or	
not	Alice	is	in	the	data	set	is	at	least	as	difficult	as	telling	apart	 (0, 1)	and	 (�, 1)	based	on	one	
draw.	Moreover,	we	show	that	GDP	is	a	‘canonical’	privacy	guarantee	in	a	fundamental	sense:	for	
any	privacy	definition	that	retains	a	hypothesis	testing	interpretation,	we	prove	that	the	privacy	
guarantee	of	composition	with	an	appropriate	scaling	converges	to	GDP	in	the	limit.	This	central	
limit	theorem	type	of	result	is	remarkable	not	only	because	of	its	profound	theoretical	implica-
tion,	but	also	for	providing	a	computationally	tractable	tool	for	analytically	approximating	the	
privacy	loss	under	composition.	Figure	1	demonstrates	that	this	tool	yields	surprisingly	accurate	
approximations	to	the	exact	trade-	off	in	testing	the	hypotheses	(2)	or	substantially	improves	on	
the	existing	privacy	guarantee	in	terms	of	type	I	and	type	II	errors.	See	Sections	2.2	and	3	for	a	
thorough	discussion.

1.1.3	 |	 A	primal-	dual	perspective

We	show	a	general	duality	between	f-	DP	and	infinite	collections	of	(ɛ, δ)-	DP	guarantees.	This	
duality	is	useful	in	two	ways.	First,	it	allows	one	to	analyse	an	algorithm	in	the	framework	of	f-	
DP,	and	then	convert	back	to	an	(ɛ, δ)-	DP	guarantee	at	the	end,	if	desired.	More	fundamentally,	
this	duality	provides	an	approach	to	import	techniques	developed	for	(ɛ, δ)-	DP	to	the	framework	
of	f-	DP.	As	an	important	application,	we	use	this	duality	to	show	how	to	reason	simply	about	
privacy	amplification	by	subsampling	for	f-	DP,	by	leveraging	existing	results	for	(ɛ, δ)-	DP.	This	
is	in	contrast	to	divergence	based	notions	of	privacy,	in	which	reasoning	about	amplification	by	
subsampling	is	difficult.
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Taken	together,	 this	collection	of	attractive	properties	render	 f-	DP	a	mathematically	coher-
ent,	computationally	efficient	and	versatile	framework	for	privacy-	preserving	data	analysis.	To	
demonstrate	the	practical	use	of	this	hypothesis	testing-	based	framework,	we	give	a	substantially	
sharper	analysis	of	 the	privacy	guarantees	of	noisy	 stochastic	gradient	descent,	 improving	on	
previous	 special-	purpose	 analyses	 that	 reasoned	 about	 divergences	 rather	 than	 directly	 about	
hypothesis	testing	(Abadi	et al.,	2016).	This	application	is	presented	in	Section	5.

2 |  f -  DIFFERENTIAL PRIVACY AND ITS BASIC  
PROPERTIES

In	Section	2.1,	we	give	a	formal	definition	of	f-	DP.	Section	2.2	introduces	Gaussian	differential	
privacy,	a	special	case	of	f-	DP.	In	Section	2.3,	we	highlight	some	appealing	properties	of	this	new	
privacy	notation	from	an	information-	theoretic	perspective.	Next,	Section	2.4	offers	a	profound	
connection	between	f-	DP	and	(ɛ, δ)-	DP.	Finally,	we	discuss	the	group	privacy	properties	of	f-	DP.

Before	moving	on,	we	first	establish	several	key	pieces	of	notation	from	the	differential	pri-
vacy	literature.

•	 Data set.	A	data	set	S	is	a	collection	of	n	records,	each	corresponding	to	an	individual.	Formally,	
we	write	the	data	set	as	S = (x1, …, xn),	and	an	individual	xi ∈ X 	for	some	abstract	space	X.	Two	
data	sets	S� = (x�

1
, …, x�n)	and	S	are	said	to	be	neighbours	if	they	differ	in	exactly	one	record,	that	

is,	there	exists	an	index	j	such	that	xi = x�
i
	for	all	i ≠ j	and	xj ≠ x′

j
.

F I G U R E  1 	 Left:	Our	central	limit	theorem	based	approximation	(in	blue)	is	very	close	to	the	composition	
of	just	10	mechanisms	(in	red).	The	tightest	possible	approximation	via	an	(ɛ, δ)-	DP	guarantee	(in	back)	is	
substantially	looser.	See	Figure	5	for	parameter	setup.	Right:	Privacy	analysis	of	stochastic	gradient	descent	used	
to	train	a	convolutional	neural	network	on	MNIST	(LeCun	&	Cortes,	2010).	The	f-	DP	framework	yields	a	privacy	
guarantee	(in	red)	for	this	problem	that	is	significantly	better	than	the	optimal	(ɛ,δ)-	DP	guarantee	(in	black)	that	
is	derived	from	the	moments	accountant	(MA)	method	(Abadi	et al.,	2016).	Put	simply,	our	analysis	shows	that	
stochastic	gradient	descent	releases	less	sensitive	information	than	expected	in	the	literature.	See	Section	5	for	
more	plots	and	details	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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•	 Mechanism.	A	mechanism	M	refers	to	a	randomized	algorithm	that	takes	as	input	a	data	set	
S	and	releases	some	(randomized)	statistics	M(S)	of	the	data	set	in	some	abstract	space	Y.	For	
example,	a	mechanism	can	release	the	average	salary	of	individuals	in	the	data	set	plus	some	
random	noise.

2.1 | Trade- off functions and f- DP

All	variants	of	differential	privacy	informally	require	that	it	be	hard	to	distinguish	any	pairs	of	
neighbouring	data	sets	based	on	the	information	released	by	a	private	a	mechanism	M.	From	an	
attacker's	perspective,	it	is	natural	to	formalize	this	notion	of	‘indistinguishability’	as	a	hypoth-
esis	testing	problem	for	two	neighbouring	data	sets	S	and	S′:

The	output	of	the	mechanism	M	serves	as	the	basis	for	performing	the	hypothesis	testing	problem.	
Denote	by	P	 and	Q	 the	probability	distributions	of	 the	mechanism	applied	 to	 the	 two	data	 sets,	
namely	M(S)	and	M(S′),	respectively.	The	fundamental	difficulty	in	distinguishing	the	two	hypothe-
ses	is	best	delineated	by	the	optimal	trade-	off	between	the	achievable	type	I	and	type	II	errors.	More	
precisely,	consider	a	rejection	rule	0 ≤ ϕ ≤ 1	that	takes	as	input	the	released	results	of	the	mechanism,	
with	its	type	I	and	type	II	errors	defined	as

respectively.	The	two	errors	satisfy,	for	example,	the	well-	known	constraint	�� + �� ≥ 1 − TV(P, Q)	,	
where	the	total	variation	distance	TV(P, Q)	is	the	supremum	of	|P(A) − Q(A)|	over	all	measurable	
sets	A.	Instead	of	this	rough	constraint,	we	seek	to	characterize	the	fine-	grained	trade-	off	between	
the	two	errors.	Explicitly,	fixing	the	type	I	error	at	any	level,	we	consider	the	minimal	achievable	type	
II	error.	This	motivates	the	following	definition.

Definition 2	 (trade-	off	function).	For	any	two	probability	distributions	P	and	Q	on	the	same	
space,	define	the	trade-	off	function	T(P, Q) : [0, 1] → [0, 1]	as

where	the	infimum	is	taken	over	all	(measurable)	rejection	rules.

The	trade-	off	function	serves	as	a	clear-	cut	boundary	of	the	achievable	and	unachievable	re-
gions	of	type	I	and	type	II	errors,	rendering	itself	the	complete	characterization	of	the	fundamen-
tal	difficulty	in	testing	between	the	two	hypotheses.	The	greater	this	function	is,	the	harder	it	is	
to	distinguish	the	two	distributions.	In	particular,	the	greatest	trade-	off	function	is	the	identity	
trade-	off	function	Id(α) := 1 − α.	Notably,	1 − f	is	the	ROC	curve	for	classifying	the	output	as	
being	from	the	null	or	alternative	hypothesis.	For	completeness,	the	minimal	��	can	be	achieved	
by	the	likelihood	ratio	test—	a	fundamental	result	known	as	the	Neyman–	Pearson	lemma,	which	
is	stated	in	Appendix	A	for	convenience.

H0 : the underlying data set is S versus H1 : the underlying data set is S
′.

�� = �P[�], �� = 1 − �Q[�],

T(P,Q)(�) = inf
{
��: �� ≤ �

}
,
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A	function	is	called	a	trade-	off	function	if	it	is	equal	to	T(P, Q)	for	some	distributions	P	and	
Q.	Below	we	give	a	necessary	and	sufficient	condition	for	f	to	be	a	trade-	off	function	and	relegate	
its	proof	to	Appendix	A.	This	characterization	reveals,	for	example,	that	max{f, g}	is	a	trade-	off	
function	if	both	f	and	g	are	trade-	off	functions.

Proposition 1 A function f : [0, 1] → [0, 1] is a trade- off function if and only if f is convex, con-
tinuous, non- increasing and f  (x) ≤ 1 − x for x  ∈  [0, 1].

Now,	we	propose	a	new	generalization	of	differential	privacy	built	on	top	of	trade-	off	func-
tions.	Below,	we	write	g ≥ f	for	two	functions	defined	on	[0, 1]	if	g(x) ≥ f(x)	for	all	0 ≤ x ≤ 1,	and	we	
abuse	notation	by	identifying	M(S)	and	M(S′)	with	their	corresponding	probability	distributions.	
Note	that	if	T(P, Q) ≥ T(P̃, Q̃),	then	in	a	very	strong	sense,	P	and	Q	are	harder	to	distinguish	
than	P̃	and	Q̃	at	any	level	of	type	I	error.

Definition 3	 (f-	differential	privacy).	Let	f	be	a	trade-	off	function.	A	mechanism	M	is	said	to	be	
f-	differentially	private	if

for	all	neighbouring	data	sets	S	and	S′.

A	graphical	illustration	of	this	definition	is	shown	in	Figure	2.	Letting	P	and	Q	be	the	dis-
tributions	such	that	f = T(P, Q),	this	privacy	definition	amounts	to	saying	that	a	mechanism	
is	f-	DP	if	distinguishing	any	two	neighbouring	data	sets	based	on	the	released	information	is	
at	least	as	difficult	as	distinguishing	P	and	Q	based	on	a	single	draw.	In	contrast	to	existing	

T
(
M(S),M(S′)

) ≥ f

F I G U R E  2 	 Three	different	examples	of	T(M(S), M(S′)).	Only	the	dashed	line	corresponds	to	a	trade-	off	
function	satisfying	f-	DP
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definitions	of	differential	privacy,	our	new	definition	is	parameterized	by	a	function,	as	op-
posed	 to	 several	 real-	valued	 parameters	 (e.g.,	 ɛ	 and	 δ).	This	 functional	 perspective	 offers	 a	
complete	characterization	of	‘privacy’,	thereby	avoiding	the	pitfall	of	summarizing	statistical	
information	too	early.	This	fact	is	crucial	to	the	development	of	a	composition	theorem	for	f-	
DP	in	Section	3.	Although	this	completeness	comes	at	the	cost	of	increased	complexity,	as	we	
will	see	in	Section	2.2,	a	simple	family	of	trade-	off	functions	can	often	closely	capture	privacy	
loss	in	many	scenarios.

Naturally,	the	definition	of	f-	DP	is	symmetric	in	the	same	sense	as	the	neighbouring	relation-
ship,	which	by	definition	is	symmetric.	Observe	that	this	privacy	notion	also	requires

for	any	neighbouring	pair	S, S′.	Therefore,	it	is	desirable	to	restrict	our	attention	to	‘symmetric’	trade-	
off	functions.	Proposition	2	shows	that	this	restriction	does	not	lead	to	any	loss	of	generality.

Proposition 2 Let a mechanism M be f- DP. Then, M is f S- DP with f S = max{f,  f−1}, where the 
inverse function is defined as

for	α  ∈  [0, 1].

We	prove	Proposition	2	 in	Appendix	A.	Writing	 f = T(P, Q),	we	can	express	 the	 inverse	as	
f−1 = T(Q, P),	which	therefore	is	also	a	trade-	off	function.	As	a	consequence	of	this,	fS	continues	
to	be	a	trade-	off	function	by	making	use	of	Proposition	1	and,	moreover,	is	symmetric	in	the	sense	
that

Importantly,	this	symmetrization	gives	a	tighter	bound	in	the	privacy	definition	since	fS ⩾ f.	In	the	
remainder	of	the	paper,	therefore,	trade-	off	functions	will	always	be	assumed	to	be	symmetric	unless	
otherwise	specified.

We	conclude	this	subsection	by	showing	that	f-	DP	is	a	generalization	of	(ɛ, δ)-	DP.	This	fore-
shadows	a	deeper	connection	between	f-	DP	and	(ɛ, δ)-	DP	that	will	be	discussed	in	Section	2.4.	
Denote

for	0 ≤ α ≤ 1,	which	is	a	trade-	off	function.	Figure	3	shows	the	graph	of	this	function	and	its	evident	
symmetry.	The	following	result	is	adapted	from	Wasserman	and	Zhou	(2010).

Proposition 3 (Wasserman	&	Zhou,	2010). A mechanism M is (ɛ, δ)- DP if and only if M is 
fɛ, δ- DP.

T
(
M(S′),M(S)

) ≥ f

(3)f −1(�): = inf{t ∈ [0, 1]: f (t) ≤ �}

f S = (f S)−1.

(4)f�,�(�) =max
{
0, 1 − � − e��, e−�(1 − � − �)

}
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2.2 | Gaussian differential privacy

This	subsection	introduces	a	parametric	family	of	f-	DP	guarantees,	where	f	is	the	trade-	off	func-
tion	of	two	normal	distributions.	We	refer	to	this	specialization	as	Gaussian	differential	privacy	
(GDP).	GDP	enjoys	many	desirable	properties	that	lead	to	its	central	role	in	this	paper.	Among	
others,	we	can	now	precisely	define	the	trade-	off	function	with	a	single	parameter.	To	define	this	
notion,	let

for	μ ≥ 0.	An	explicit	expression	for	the	trade-	off	function	Gμ	reads

where	Φ	denotes	the	standard	normal	CDF.	For	completeness,	we	provide	a	proof	of	(5)	in	Appendix	
A.	This	trade-	off	function	is	decreasing	in	μ	in	the	sense	that	G� ≤ G�′	if	� ≥ �′.	We	now	define	
GDP:

Definition 4	 A	mechanism	M	is	said	to	satisfy	μ-	Gaussian	Differential	Privacy	(μ-	GDP)	if	it	is	
Gμ-	DP.	That	is,

for	all	neighbouring	data	sets	S	and	S′.

G�: = T
( (0, 1), (�, 1)

)

(5)G�(�) = Φ
(
Φ−1(1 − �) − �

)
,

T(M(S),M(S′)) ≥ G�

F I G U R E  3 	 Left:	fɛ,δ	is	a	piecewise	linear	function	and	is	symmetric	with	respect	to	the	line	y = x.	It	has	
(nontrivial)	slopes	−e±ɛ	and	intercepts	1 − δ.	Right:	Trade-	off	functions	of	unit-	variance	Gaussian	distributions	
with	different	means.	The	case	of	μ = 0.5	is	reasonably	private,	μ = 1	is	borderline	private,	and	μ = 3	is	basically	
non-	private:	an	adversary	can	control	type	I	and	type	II	errors	simultaneously	at	only	0.07.	In	the	case	of	μ = 6	
(almost	coincides	with	the	axes),	the	two	errors	both	can	be	as	small	as	0.001
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GDP	has	several	attractive	properties.	First,	 this	privacy	definition	is	fully	described	by	the	
single	mean	parameter	of	a	unit-	variance	Gaussian	distribution,	which	makes	it	easy	to	describe	
and	interpret	the	privacy	guarantees.	For	instance,	one	can	see	from	the	right	panel	of	Figure	3	
that	μ ≤ 0.5	guarantees	a	reasonable	amount	of	privacy,	whereas	if	μ ⩾ 6,	almost	nothing	is	being	
promised.	 Second,	 loosely	 speaking,	 GDP	 occupies	 a	 role	 among	 all	 hypothesis	 testing	 based	
notions	of	privacy	that	is	similar	to	the	role	that	the	Gaussian	distribution	has	among	general	
probability	distributions.	We	formalize	this	important	point	by	proving	central	limit	theorems	for	
f-	DP	in	Section	3,	which,	roughly	speaking,	says	that	f-	DP	converges	to	GDP	under	composition	
in	the	limit.	Lastly,	as	shown	in	the	remainder	of	this	subsection,	GDP	precisely	characterizes	the	
Gaussian	mechanism,	one	of	the	most	fundamental	building	blocks	of	differential	privacy.

Consider	the	problem	of	privately	releasing	a	univariate	statistic	θ(S)	of	the	data	set	S.	Define	
the	sensitivity	of	θ	as

where	the	supremum	is	over	all	neighbouring	data	sets.	The	Gaussian	mechanism	adds	Gaussian	
noise	to	the	statistic	θ	in	order	to	obscure	whether	θ	is	computed	on	S	or	S′.	The	following	result	
shows	 that	 the	Gaussian	mechanism	with	noise	properly	 scaled	 to	 the	sensitivity	of	 the	statistic	
satisfies	GDP.

Theorem 1 Define the Gaussian mechanism that operates on a statistic θ as M(S) = θ(S) + ξ, 
where � ∼  (0, sens(�)2∕�2). Then, M is μ- GDP.

Proof of Theorem 1 Recognizing	 that	 M(S),	 M(S′)	 are	normally	distributed	with	means	θ(S),	
θ(S′),	respectively,	and	common	variance	�2 = sens(�)2∕�2,	we	get

By	the	definition	of	sensitivity,	|�(S) − �(S�)|∕� ≤ sens(�)∕� = �.	Therefore,	we	get

This	completes	the	proof.

As	implied	by	the	proof	above,	GDP	offers	the	tightest	possible	privacy	bound	of	the	Gaussian	
mechanism.	More	precisely,	the	Gaussian	mechanism	in	Theorem	1	satisfies

where	 the	 infimum	 is	 (asymptotically)	 achieved	 at	 the	 two	 neighbouring	 data	 sets	 such	 that	
|�(S) − �(S�)| = sens(�)	irrespective	of	the	type	I	error	α.	As	such,	the	characterization	by	GDP	is	
precise	in	the	pointwise	sense.	In	contrast,	the	right-	hand	side	of	Equation	(6)	in	general	is	not	neces-
sarily	a	convex	function	of	α	and,	in	such	case,	is	not	a	trade-	off	function	according	to	Proposition	1.	
This	nice	property	of	Gaussian	mechanism	is	related	to	the	log-	concavity	of	Gaussian	distributions.	
See	Proposition	A.3	for	a	detailed	treatment	of	log-	concave	distributions.

sens(�) = sup
S,S�

|�(S) − �(S�)|,

T(M(S),M(S�)) = T( (�(S), �2), (�(S�), �2)) = G|�(S)−�(S�)|∕� .

T(M(S),M(S�)) = G|�(S)−�(S�)|∕� ⩾ G�.

(6)G�(�) = inf
neighbouring S,S�

T(M(S),M(S�))(�),
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2.3 | Post- processing and the informativeness of f- DP

Intuitively,	a	data	analyst	cannot	make	a	statistical	analysis	more	disclosive	only	by	processing	
the	output	of	the	mechanism	M.	This	is	called	the	post-	processing	property,	a	natural	require-
ment	that	any	notion	of	privacy,	including	our	definition	of	f-	DP,	should	satisfy.

To	formalize	this	point	for	f-	DP,	denote	by	Proc : Y → Z	a	(randomized)	algorithm	that	maps	
the	input	M(S)  ∈  Y	to	some	space	Z,	yielding	a	new	mechanism	that	we	denote	by	Proc ∘ M.	The	
following	result	confirms	the	post-	processing	property	of	f-	DP.

Proposition 4 If a mechanism M is f- DP, then its post- processing Proc ∘ M is also f- DP.

Proposition	4	is	a	consequence	of	the	following	lemma.	Let	Proc(P)	be	the	probability	distri-
bution	of	Proc(ζ)	with	ζ	drawn	from	P.	Define	Proc(Q)	likewise.

Lemma 1 For any two distributions P and Q, we have T(Proc(P), Proc(Q)) ⩾ T(P, Q).

This	lemma	means	that	post-	processed	distributions	can	only	become	more	difficult	to	tell	
apart	 than	 the	 original	 distributions	 from	 the	 perspective	 of	 trade-	off	 functions.	While	 the	
same	property	holds	for	many	divergence	based	measures	of	indistinguishability	such	as	the	
Rényi	divergences	used	by	the	concentrated	differential	privacy	family	of	definitions	(Bun	&	
Steinke,	2016;	Bun	et al.,	2018a;	Dwork	&	Rothblum,	2016;	Mironov,	2017),	a	consequence	of	
the	following	theorem	is	that	trade-	off	functions	offer	the	most	informative	measure	among	
all.	This	remarkable	inverse	of	Lemma	1	is	due	to	Blackwell	(see	also	Theorem	2.5	in	Kairouz	
et al.,	2017).

Theorem 2 (Blackwell,	1950,	Theorem	10). Let P, Q be probability distributions on Y and P′, Q′ 
be probability distributions on Z. The following two statements are equivalent:

1. T(P,  Q)  ≤  T(P′,Q′).
2. There exists a randomized algorithm	Proc: Y → Z such that Proc(P) = P′, Proc(Q) = Q′.

To	appreciate	the	implication	of	this	theorem,	we	begin	by	observing	that	post-	processing	in-
duces	an	order	on	pairs	of	distributions,	which	is	called	the	Blackwell	order	(see,	e.g.,	Raginsky,	
2011).	Specifically,	 if	the	above	condition	(b)	holds,	then	we	write	(P, Q) ⪯Blackwell (P′, Q′)	and	
interpret	 this	as	 ‘(P, Q)	 is	easier	 to	distinguish	 than	(P′, Q′)	 in	 the	Blackwell	 sense’.	Similarly,	
when	T(P, Q) ≤ T(P′, Q′),	we	write	(P, Q) ⪯tradeoff (P′, Q′)	and	interpret	this	as	‘(P, Q)	is	easier	to	
distinguish	than	(P′, Q′)	in	the	testing	sense’.	In	general,	any	privacy	measure	used	in	defining	a	
privacy	notion	induces	an	order	⪯	on	pairs	of	distributions.	Assuming	the	post-	processing	prop-
erty	for	the	privacy	notion,	the	induced	order	⪯	must	be	consistent	with	⪯Blackwell.	Concretely,	we	
denote	by	Ineq(⪯) = {(P, Q; P′, Q′) : (P, Q) ⪯ (P′, Q′)}	the	set	of	all	comparable	pairs	of	the	order	
⪯.	As	is	clear,	a	privacy	notion	satisfies	the	post-	processing	property	if	and	only	if	the	induced	
order	⪯	satisfies	Ineq(⪯)  ⊇  Ineq(⪯Blackwell).

Therefore,	for	any	reasonable	privacy	notion,	the	set	Ineq(⪯)	must	be	large	enough	to	contain	
Ineq(⪯Blackwell).	However,	it	is	also	desirable	to	have	a	not	too	large	Ineq(⪯).	For	example,	con-
sider	the	privacy	notion	based	on	a	trivial	divergence	D0	with	D0(P‖Q) ≡ 0	for	any	P, Q.	Note	
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that	Ineq(⪯D0 )	is	the	largest	possible	and,	meanwhile,	it	is	not	informative	at	all	in	terms	of	mea-
suring	the	indistinguishability	of	two	distributions.

The	argument	above	suggests	 that	going	 from	the	 ‘minimal’	order	 Ineq(⪯Blackwell)	 to	 the	
‘maximal’	order	Ineq(⪯D0 )	would	lead	to	information	loss.	Remarkably,	f-	DP	is	the	most	in-
formative	differential	privacy	notion	from	this	perspective	because	its	induced	order	⪯tradeoff	
satisfies	Ineq(⪯tradeoff) = Ineq(⪯Blackwell).	In	stark	contrast,	this	is	not	true	for	the	order	induced	
by	other	popular	privacy	notions	such	as	Rényi	differential	privacy	and	(ɛ, δ)-	DP.	We	prove	
this	claim	in	Appendix	B	and	further	justify	the	informativeness	of	f-	DP	by	providing	general	
tools	that	can	losslessly	convert	f-	DP	guarantees	into	divergence	based	privacy	guarantees.

2.4 | A primal- dual perspective

In	this	subsection,	we	show	that	f-	DP	is	equivalent	to	an	infinite	collection	of	(ɛ, δ)-	DP	guarantees	
via	the	convex	conjugate	of	the	trade-	off	function.	As	a	consequence	of	this,	we	can	view	f-	DP	
as	the	primal	privacy	representation	and,	accordingly,	 its	dual	representation	is	the	collection	
of	 (ɛ, δ)-	DP	guarantees.	Taking	 this	powerful	viewpoint,	many	 results	 from	 the	 large	body	of	
(ɛ, δ)-	DP	work	can	be	carried	over	to	f-	DP	in	a	seamless	fashion.	In	particular,	this	primal-	dual	
perspective	is	crucial	to	our	analysis	of	‘privacy	amplification	by	subsampling’	in	Section	4.	All	
proofs	are	deferred	to	Appendix	A.

First,	we	present	the	result	that	converts	a	collection	of	(ɛ, δ)-	DP	guarantees	into	an	f-	DP	guar-
antee.	This	result	is	self-	evidence	and	its	proof	is,	therefore,	omitted.

Proposition 5 (Dual	to	primal). Let I be an arbitrary index set such that each i  ∈  I is associated 
with �i ∈ [0, ∞) and �i ∈ [0, 1]. A mechanism is (ɛi, δi)- DP for all i  ∈  I if and only if it is 
f- DP with

This	proposition	follows	easily	from	the	equivalence	of	(ɛ, δ)-	DP	and	fɛ,δ-	DP.	We	remark	that	
the	function	f	constructed	above	remains	a	symmetric	trade-	off	function.

The	more	 interesting	direction	 is	 to	 convert	 f-	DP	 into	a	 collection	of	 (ɛ, δ)-	DP	guarantees.	
Recall	that	the	convex	conjugate	of	a	function	g	defined	on	(−∞, ∞)	is	defined	as

To	define	the	conjugate	of	a	trade-	off	function	f,	we	extend	its	domain	by	setting	f(x) = ∞	for	x < 0	
and	x > 1.	With	this	adjustment,	the	supremum	is	effectively	taken	over	0 ≤ x ≤ 1.

Proposition 6 (Primal	to	dual). For a symmetric trade- off function f, a mechanism is f- DP if and 
only if it is (ɛ, δ(ɛ))- DP for all ɛ ⩾ 0 with δ(ɛ) = 1 + f *(−eɛ).

For	example,	taking	f = Gμ,	the	following	corollary	provides	a	lossless	conversion	from	GDP	
to	a	collection	of	(ɛ, δ)-	DP	guarantees.	This	conversion	is	exact	and,	therefore,	any	other	(ɛ, δ)-	DP	
guarantee	derived	for	the	Gaussian	mechanism	is	implied	by	this	corollary.	See	Figure	4	for	an	
illustration	of	this	result.

f = sup
i∈ I

f�i,�i .

(7)g∗(y) = sup
−∞<x<∞

yx − g(x).
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Corollary 1 A mechanism is μ- GDP if and only if it is (ɛ, δ(ɛ))- DP for all ɛ ⩾ 0, where

This	corollary	has	appeared	earlier	in	Balle	and	Wang	(2018).	Along	this	direction,	Balle	et al.	
(2018)	further	proposed	‘privacy	profile’,	which	in	essence	corresponds	to	an	infinite	collection	
of	(ɛ, δ).	The	notion	of	privacy	profile	mainly	serves	as	an	analytical	tool	in	Balle	et al.	(2018).

The	primal-	dual	perspective	provides	a	useful	tool	through	which	we	can	bridge	the	two	pri-
vacy	definitions.	In	some	cases,	it	is	easier	to	work	with	f-	DP	by	leveraging	the	interpretation	and	
informativeness	of	trade-	off	functions,	as	seen	from	the	development	of	composition	theorems	
for	f-	DP	in	Section	3.	Meanwhile,	(ɛ, δ)-	DP	is	more	convenient	to	work	with	in	the	cases	where	
the	lower	complexity	of	two	parameters	ɛ, δ	is	helpful,	for	example,	in	the	proof	of	the	privacy	
amplification	by	subsampling	 theorem	for	 f-	DP.	 In	short,	our	approach	 in	Section	4	 is	 to	 first	
work	in	the	dual	world	and	use	existing	subsampling	theorems	for	(ɛ, δ)-	DP,	and	then	convert	the	
results	back	to	f-	DP	using	a	slightly	more	advanced	version	of	Proposition	6.

2.5 | Group privacy

The	notion	of	f-	DP	can	be	extended	to	address	privacy	of	a	group	of	individuals,	and	a	question	
of	interest	is	to	quantify	how	privacy	degrades	as	the	group	size	grows.	To	set	up	the	notation,	
we	say	that	two	data	sets	S, S′	are	k-	neighbours	(where	k ≥ 2	is	an	integer)	if	there	exist	data	sets	
S = S0, S1, …, Sk = S′	such	that	Si	and	Si+1	are	neighbouring	or	identical	for	all	i = 0, …, k−1.	

�(�) = Φ

(
−

�

�
+

�

2

)
− e�Φ

(
−

�

�
−

�

2

)
.

F I G U R E  4 	 Each	(ɛ, δ(ɛ))-	DP	guarantee	corresponds	to	two	supporting	linear	functions	(symmetric	to	each	
other)	to	the	trade-	off	function	describing	the	complete	f-	DP	guarantee.	In	general,	characterizing	a	privacy	
guarantee	using	only	a	subset	of	(ɛ, δ)-	DP	guarantees	(for	example,	only	those	with	small	δ)	would	result	in	
information	loss	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Equivalently,	S, S′	are	k-	neighbours	if	they	differ	by	at	most	k	individuals.	Accordingly,	a	mecha-
nism	M	is	said	to	be	f-	DP	for	groups of size k	if

for	all	k-	neighbours	S	and	S′.
In	the	following	theorem,	we	use	h∘k	to	denote	the	k-	fold	iterative	composition	of	a	function	h.	

For	example,	h∘1 = 	h	and	h∘2(x)=h(h(x)).

Theorem 3 If a mechanism is f- DP, then it is [1 − (1 − f)∘k]- DP for groups of size k. In particular, 
if a mechanism is μ- GDP, then it is kμ- GDP for groups of size k.

For	completeness,	1 − (1 − f)∘k	is	a	trade-	off	function	and,	moreover,	remains	symmetric	if	f	is	
symmetric.	These	two	facts	and	Theorem	3	are	proved	in	Appendix	A.	As	revealed	in	the	proof,	
the	privacy	bound	1−(1−f)∘k	in	general	cannot	be	improved,	thereby	showing	that	the	group	op-
eration	in	the	f-	DP	framework	is	closed	and	tight.	In	addition,	it	is	easy	to	see	that	1 − (1 − f)∘k ≤ 
1 − (1 − f)∘(k−1)	by	recognizing	that	the	trade-	off	function	f	satisfies	1 − f(x) ⩾ x.	This	is	consistent	
with	the	intuition	that	detecting	changes	in	groups	of	k	individuals	becomes	easier	as	the	group	
size	increases.

As	an	interesting	consequence	of	Theorem	3,	 the	group	privacy	of	ɛ-	DP	in	the	 limit	corre-
sponds	to	the	trade-	off	function	of	two	Laplace	distributions.	Recall	that	the	density	of	Lap(μ, b)	
is	 1

2b
e−|x−�|∕b.

T(M(S),M(S′)) ⩾ f

F I G U R E  5 	 Left:	Tensoring	with	f0,δ	scales	the	graph	towards	the	origin	by	a	factor	of	1 − δ.	Right:	Tenfold	
composition	of	(1∕

√
10, 0)-	DP	mechanisms,	that	is,	 f⊗n

𝜀,0
	with	n = 10,	� = 1∕

√
n.	The	dashed	curve	corresponds	

to	ɛ = 2.89,	δ = 0.001.	These	values	are	obtained	by	first	setting	δ=0.001	and	finding	the	smallest	ɛ	such	that	the	
composition	is	(ɛ, δ)-	DP.	Note	that	the	central	limit	theorem	approximation	to	the	true	trade-	off	curve	is	almost	
perfect,	whereas	the	tightest	possible	approximation	via	(ɛ, δ)-	DP	is	substantially	looser	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Proposition 7 Fix μ ≥ 0 and set ɛ = μ/k. As k → ∞, we have

The convergence is uniform over [0, 1].

Two	remarks	are	in	order.	First,	T(Lap(0, 1), Lap(μ, 1))	is	not	equal	to	fɛ,δ	for	any	ɛ, δ	and,	there-
fore,	(ɛ, δ)-	DP	is	not	expressive	enough	to	measure	privacy	under	the	group	operation.	Second,	
the	approximation	in	this	theorem	is	very	accurate	even	for	small	k.	For	example,	for	μ = 1, k = 4,	
the	function	1 − (1 − fɛ,0)∘k	is	within	0.005	of	T(Lap(0, 1), Lap(μ, 1))	uniformly	over	[0, 1].	The	
proof	of	Proposition	7	is	deferred	to	Appendix	A.

3 |  COMPOSITION AND LIMIT THEOREMS

Imagine	that	an	analyst	performs	a	sequence	of	analyses	on	a	private	data	set,	 in	which	each	
analysis	is	informed	by	prior	analyses	on	the	same	data	set.	Provided	that	every	analysis	alone	
is	private,	the	question	is	whether	all	analyses	collectively	are	private,	and	if	so,	how	the	privacy	
degrades	as	the	number	of	analyses	increases,	namely	under	composition.	It	is	essential	for	a	no-
tion	of	privacy	to	gracefully	handle	composition,	without	which	the	privacy	analysis	of	complex	
algorithms	would	be	almost	impossible.

Now,	we	describe	the	composition	of	two	mechanisms.	For	simplicity,	this	section	writes	X	
for	the	space	of	data	sets	and	abuse	notation	by	using	n	to	refer	to	the	number	of	mechanisms	
in	 composition	 (the	 use	 of	 n	 is	 consistent	 with	 the	 literature	 on	 central	 limit	 theorems).	 Let	
M1 : X → Y1	be	the	first	mechanism	and	M2 : X × Y1 → Y2	be	the	second	mechanism.	In	brief,	
M2	takes	as	input	the	output	of	the	first	mechanism	M1	in	addition	to	the	data	set.	With	the	two	
mechanisms	in	place,	the	joint	mechanism	M : X → Y1 × Y2	is	defined	as

where	 y1  =  M1(S).	 Roughly	 speaking,	 the	 distribution	 of	 M(S)	 is	 constructed	 from	 the	 marginal	
distribution	of	M1(S)	on	Y1	and	the	conditional	distribution	of	M2(S, y1)	on	Y2	given	M1(S) = y1.	
The	composition	of	more	than	two	mechanisms	follows	recursively.	In	general,	given	a	sequence	of	
mechanisms	Mi : X × Y1 × ⋯ × Yi−1 → Yi	for	i = 1, 2, …, n,	we	can	recursively	define	the	joint	mech-
anism	as	their	composition:

Put	differently,	M(S)	can	be	interpreted	as	the	trajectory	of	a	Markov	chain	whose	initial	distribution	
is	given	by	M1(S)	and	the	transition	kernel	Mi(S, …)	at	each	step.

Using	the	language	above,	the	goal	of	this	section	is	to	relate	the	privacy	loss	of	M	to	that	of	
the	n	mechanisms	M1, …, Mn	 in	 the	 f-	DP	framework.	 In	short,	Section	3.1	develops	a	general	
composition	theorem	for	f-	DP.	In	Section	3.2,	we	identify	a	central	limit	theorem	phenomenon	of	
composition	in	the	f-	DP	framework,	which	can	be	used	as	an	approximation	tool,	just	like	we	use	
the	central	limit	theorem	for	random	variables.	This	approximation	is	extended	to	and	improved	
for	(ɛ, δ)-	DP	in	Section	3.3.

1 − (1− f�,0)
◦k

→ T(Lap(0, 1), Lap(�, 1)).

(8)M(S) = (y1,M2(S, y1)),

M:X → Y1 ×⋯ × Yn.
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3.1 | A general composition theorem

The	main	thrust	of	this	subsection	is	to	demonstrate	that	the	composition	of	private	mechanisms	
is	closed	and	tight	 in	the	 f-	DP	framework.	This	result	 is	 formally	stated	 in	Theorem	4,	which	
shows	that	the	composed	mechanism	remains	f-	DP	with	the	trade-	off	function	taking	the	form	
of	a	certain	product.	To	define	the	product,	consider	two	trade-	off	functions	f	and	g	that	are	given	
as	f = T(P, Q)	and	g = T(P′, Q′)	for	some	probability	distributions	P, P′, Q, Q′.

Definition 5	 The	 tensor	product	of	 two	 trade-	off	 functions	 f = T(P, Q)	and	g = T(P′, Q′)	 is	
defined	as

Throughout	the	paper,	write	f ⊗ g(α)	for	(f ⊗ g)(α),	and	denote	by	f⊗n	the	n-	fold	tensor	product	
of	f.	The	well-	definedness	of	f⊗n	rests	on	the	associativity	of	the	tensor	product,	which	we	will	
soon	illustrate.

By	definition,	f ⊗ g	is	also	a	trade-	off	function.	Nevertheless,	it	remains	to	be	shown	that	the	
tensor	product	is	well	defined:	that	is,	the	definition	is	independent	of	the	choice	of	distributions	
used	to	represent	a	trade-	off	function.	More	precisely,	assuming	 f = T(P, Q) = T(P̃, Q̃)	for	some	
distributions	P̃, Q̃,	we	need	to	ensure	that

We	defer	the	proof	of	this	intuitive	fact	to	Appendix	C.	Below	we	list	some	other	useful	properties	of	
the	tensor	product	of	trade-	off	functions,	whose	proofs	are	placed	in	Appendix	D.

1.	 The	 product	 ⊗	 is	 commutative	 and	 associative.
2.	 If	g1 ⩾ g2,	then	f ⊗ g1 ⩾ f ⊗ g2.
3.	 f ⊗ Id = Id ⊗ f = f,	where	the	identity	trade-	off	function	Id(x) = 1 − x	for	0 ≤ x ≤ 1.
4.	 (f ⊗ g)−1 = f−1 ⊗ g−1.	See	the	definition	of	inverse	in	Equation	(3).

Note	that	Id	is	the	trade-	off	function	of	two	identical	distributions.	Property	4	implies	that	when	
f, g	are	symmetric	trade-	off	functions,	their	tensor	product	f ⊗ g	is	also	symmetric.

Now	we	state	the	main	theorem	of	this	subsection.	Its	proof	is	given	in	Appendix	C.

Theorem 4 Let Mi(·, y1, …, yi−1) be fi- DP for all y1 ∈ Y1, …, yi−1 ∈ Yi−1. Then the n- fold com-
posed mechanism M : X → Y1 × ⋯ × Yn is f1 ⊗ ⋯ ⊗ fn- DP.

This	 theorem	shows	 that	 the	composition	of	mechanisms	remains	 f-	DP	or,	put	differently,	
composition	 is	 closed	 in	 the	 f-	DP	 framework.	 Moreover,	 the	 privacy	 bound	 f1  ⊗  ⋯  ⊗  fn	 in	
Theorem	4	is	tight	in	the	sense	that	it	cannot	be	improved	in	general.	To	see	this	point,	consider	
the	case	where	the	second	mechanism	completely	ignores	the	output	of	the	first	mechanism.	In	
that	case,	the	composition	obeys

f ⊗ g: = T(P × P�,Q ×Q�).

T(P × P�,Q ×Q�) = T(P̃ × P�, Q̃ ×Q�).

T(M(S),M(S�)) =T(M1(S)×M2(S),M1(S
�)×M2(S

�))

=T(M1(S),M1(S
�))⊗T(M2(S),M2(S

�)).
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Next,	taking	neighbouring	data	sets	such	that	T(M1(S), M1(S′)) = f1	and	T(M2(S), M2(S′)) = f2,	one	
concludes	that	f1 ⊗ f2	is	the	tightest	possible	bound	on	the	twofold	composition.	For	comparison,	the	
advanced	composition	theorem	for	(ɛ, δ)-	DP	does	not	admit	a	single	pair	of	optimal	parameters	ɛ, δ	
(Dwork	et al.,	2010).	In	particular,	no	pair	of	ɛ, δ	can	exactly	capture	the	privacy	of	the	composition	
of	(ɛ, δ)-	DP	mechanisms.	See	Section	3.3	and	Figure	5	for	more	elaboration.

In	 the	 case	 of	 GDP,	 composition	 enjoys	 a	 simple	 and	 convenient	 formulation	 due	 to	 the	
identity

where	� =
√

�2
1
+ ⋯ + �2n.	This	formula	is	due	to	the	rotational	invariance	of	Gaussian	distribu-

tions	with	identity	covariance.	We	provide	the	proof	in	Appendix	D.	The	following	corollary	formally	
summarizes	this	finding.

Corollary 2 The n- fold composition of μi- GDP mechanisms is 
√

�2
1
+ ⋯ + �2n- GDP.

On	a	related	note,	the	pioneering	work	Kairouz	et al.	(2017)	is	the	first	to	take	the	hypoth-
esis	 testing	 viewpoint	 in	 the	 study	 of	 privacy	 composition	 and	 to	 use	 Blackwell's	 theorem	 as	
an	analytic	tool	therein.	In	particular,	the	authors	offered	a	composition	theorem	for	(ɛ, δ)-	DP	
that	improves	on	the	advanced	composition	theorem	(Dwork	et al.,	2010).	Following	this	work,	
Murtagh	and	Vadhan	(2016)	provided	a	self-	contained	proof	by	essentially	proving	the	‘(ɛ, δ)	spe-
cial	case’	of	Blackwell's	theorem.	In	contrast,	our	novel	proof	of	Theorem	4	only	makes	use	of	the	
Neyman–	Pearson	lemma,	thereby	circumventing	the	heavy	machinery	of	Blackwell's	theorem.	
This	simple	proof	better	illuminates	the	essence	of	the	composition	theorem.

3.2 | Central limit theorems for composition

In	this	subsection,	we	identify	a	central	limit	theorem	type	phenomenon	of	composition	in	the	
f-	DP	framework.	Our	main	results	(Theorems	5	and	6),	roughly	speaking,	show	that	trade-	off	
functions	corresponding	to	small	privacy	leakage	accumulate	to	Gμ	for	some	μ	under	composi-
tion.	Equivalently,	 the	privacy	of	 the	composition	of	many	 ‘very	private’	mechanisms	 is	best	
measured	by	GDP	in	the	limit.	This	 identifies	GDP	as	the	focal	privacy	definition	among	the	
family	of	 f-	DP	privacy	guarantees,	 including	(ɛ, δ)-	DP.	More	precisely,	all	privacy	definitions	
that	are	based	on	a	hypothesis	testing	formulation	of	‘indistinguishability’	converge	to	the	guar-
antees	of	GDP	in	the	limit	of	composition.	We	remark	that	Sommer	et al.	(2018)	proved	a	con-
ceptually	related	central	limit	theorem	for	random	variables	corresponding	to	the	privacy	loss.	
This	theorem	is	used	to	reason	about	the	non-	adaptive	composition	for	(ɛ, δ)-	DP.	In	contrast,	
our	central	limit	theorem	is	concerned	with	the	optimal	hypothesis	testing	trade-	off	functions	
for	the	composition	theorem.	Moreover,	our	theorem	is	applicable	in	the	setting	of	composition,	
where	each	mechanism	is	informed	by	prior	interactions	with	the	same	database.

From	a	computational	viewpoint,	 these	 limit	 theorems	yield	an	efficient	method	of	ap-
proximating	 the	 composition	 of	 general	 f-	DP	 mechanisms.	This	 is	 very	 appealing	 for	 ana-
lysing	the	privacy	properties	of	algorithms	that	are	comprised	of	many	building	blocks	in	a	
sequence.	For	comparison,	the	exact	computation	of	privacy	guarantees	under	composition	
can	be	computationally	hard	(Murtagh	&	Vadhan,	2016)	and,	thus,	tractable	approximations	
are	important.	Using	our	central	limit	theorems,	the	computation	of	the	exact	overall	privacy	

G𝜇1
⊗ G𝜇2

⊗⋯⊗ G𝜇n
= G𝜇,
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guarantee	f1 ⊗ ⋯ ⊗ fn	in	Theorem	4	can	be	reduced	to	the	evaluation	of	a	single	mean	pa-
rameter	μ	in	a	GDP	guarantee.	We	give	an	exemplary	application	of	this	powerful	technique	
in	Section	5.

Explicitly,	the	mean	parameter	μ	in	the	approximation	depends	on	certain	functionals	of	the	
trade-	off	functions:

All	of	these	functionals	take	values	in	[0, +∞],	and	the	last	is	defined	for	f	such	that	kl(f) < ∞.	In	
essence,	these	functionals	are	calculating	moments	of	the	log-	likelihood	ratio	of	P	and	Q	such	that	
f = T(P, Q).	In	particular,	all	of	these	functionals	are	0	if	f(x) = Id(x) = 1 − x,	which	corresponds	to	
zero	privacy	leakage.	As	its	name	suggests,	kl(f)	is	the	Kullback–	Leibler	(KL)	divergence	of	P	and	Q	
and,	therefore,	kl(f) ≥ 0.	Detailed	elaboration	on	these	functionals	is	deferred	to	Appendix	D.

In	the	following	theorem,	kl	denotes	the	vector	(kl(f1), …, kl(fn))	and	�2,	�3,	�3	are	defined	
similarly;	in	addition,	‖·‖1	and	‖·‖2	are	the	ℓ1	and	ℓ2	norms,	respectively.	Its	proof	can	be	found	
in	Appendix	D.

Theorem 5 Let f1, …, fn be symmetric trade- off functions such that 𝜅3(fi) < ∞ for all 1 ≤ i ≤ n. 
Denote

and assume 𝛾 <
1

2
. Then, for all α  ∈  [γ, 1 − γ], we have

From	 a	 technical	 viewpoint,	Theorem	 5	 can	 be	 thought	 of	 as	 a	 Berry–	Esseen	 type	 central	
limit	theorem.	Loosely	speaking,	the	lower	bound	in	Equation	(9)	shows	that	the	composition	
of	fi-	DP	mechanisms	for	i = 1, …, n	is	approximately	μ-	GDP	and,	in	addition,	the	upper	bound	
demonstrates	that	the	tightness	of	this	approximation	is	specified	by	γ.	In	the	case	where	all	fi	are	
equal	to	some	f ≠ Id,	the	theorem	reveals	that	the	composition	becomes	blatantly	non-	private	as	
n → ∞	because	� ≍

√
n → ∞.	More	interesting	applications	of	the	theorem,	however,	are	cases	

where	each	fi	is	close	to	the	‘perfect	privacy’	trade-	off	function	Id	such	that	collectively	μ	is	con-
vergent	and	γ	vanishes	as	n → ∞	(see	the	example	in	Section	5).	For	completeness,	the	condition	
𝜅3(fi) < ∞	(which	implies	that	the	other	three	functionals	are	also	finite)	for	the	use	of	this	the-
orem	excludes	the	case	where	fi(0) < 1,	in	particular,	fɛ,δ	in	(ɛ, δ)-	DP	with	δ > 0.	We	introduce	an	
easy	and	general	technique	in	Section	3.3	to	deal	with	this	issue.

Next,	we	present	an	asymptotic	version	of	Theorem	5	for	composition	of	f-	DP	mechanisms.	In	
analog	to	classical	central	limit	theorems,	below	we	consider	a	triangular	array	of	mechanisms	
{Mn1, …, Mnn}

∞
n=1

,	where	Mni	is	fni-	DP	for	1 ≤ i ≤ n.	As	with	Theorem	5,	the	proof	of	Theorem	6	
is	relegated	to	Appendix	D.

kl(f ) : = −∫
1

0
log|f �(x)|dx, �2(f ): =∫

1

0
log2|f �(x)|dx

�3(f ) : =∫
1

0
|log|f �(x)| |3 dx, �3(f ): =∫

1

0
|log|f �(x)|+kl(f )|3 dx.

�: =
2‖kl‖1�

‖�2‖1 − ‖kl‖2
2

and � : =
0.56‖�3‖1

(‖�2‖1−‖kl‖2
2
)3/2

(9)G𝜇(𝛼 + 𝛾) − 𝛾 ≤ f1 ⊗ f2 ⊗⋯⊗ fn(𝛼) ≤ G𝜇(𝛼 − 𝛾) + 𝛾 .
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Theorem 6 Let {fni : 1 ≤ i ≤ n}∞
n=1

 be a triangular array of symmetric trade- off functions and 
assume the following limits for some constants K ≥ 0 and s > 0 as n → ∞:

1. 
∑n

i=1 kl(fni) → K;

2. max1≤i≤n kl(fni) → 0;

3. 
∑n

i=1 �2(fni) → s2;

4. 
∑n

i=1 �3(fni) → 0.

Then, we have

uniformly for all α  ∈  [0, 1].

Taken	 together,	 this	 theorem	 and	 Theorem	 4	 amount	 to	 saying	 that	 the	 composition	
Mn1 ⊗ … ⊗ Mnn	is	asymptotically	2K/s-	GDP.	In	fact,	this	asymptotic	version	is	a	consequence	
of	Theorem	5	as	one	can	show	μ → 2K/s	and	γ → 0	for	the	triangular	array	of	symmetric	trade-	
off	functions.	This	central	limit	theorem	implies	that	GDP	is	the	only	parameterized	family	
of	 trade-	off	 functions	 that	 can	 faithfully	 represent	 the	 effects	 of	 composition.	 In	 contrast,	
neither	ɛ-		nor	(ɛ, δ)-	DP	can	losslessly	be	tracked	under	composition—	the	parameterized	fam-
ily	of	functions	fɛ, δ	cannot	represent	the	trade-	off	function	that	results	from	the	limit	under	
composition.

The	conditions	for	use	of	this	theorem	are	reminiscent	of	Lindeberg's	condition	in	the	central	
limit	theorem	for	independent	random	variables.	The	proper	scaling	of	the	trade-	off	functions	is	
that	both	kl(fni)	and	κ2(fni)	are	of	order	O(1/n)	for	most	1 ≤ i ≤ n.	As	a	consequence,	the	cumula-
tive	effects	of	the	moment	functionals	are	bounded.	Furthermore,	as	with	Lindeberg's	condition,	
the	second	condition	in	Theorem	6	requires	that	no	single	mechanism	has	a	significant	contribu-
tion	to	the	composition	in	the	limit.

In	passing,	we	remark	that	K	and	s	satisfy	the	relationship	s =
√
2K 	 in	all	examples	of	 the	

application	of	Theorem	6	in	this	paper,	including	Theorems	7	and	11	as	well	as	their	corollaries.	
As	such,	the	composition	is	asymptotically	s-	GDP.	A	proof	of	this	interesting	observation	or	the	
construction	of	a	counterexample	is	left	for	future	work.

3.3 | Composition of (ɛ, δ)- DP: Beating Berry– Esseen

Now,	 we	 extend	 central	 limit	 theorems	 to	 (ɛ,  δ)-	DP.	 As	 shown	 by	 Proposition	 3,	 (ɛ,  δ)-	DP	 is	
equivalent	 to	 fɛ,  δ-	DP	 and,	 therefore,	 it	 suffices	 to	 approximate	 the	 trade-	off	 function	
f𝜀1,𝛿1 ⊗ ⋯ ⊗ f𝜀n,𝛿n	by	making	use	of	the	composition	theorem	for	f-	DP	mechanisms.	As	pointed	
out	in	Section	3.2,	however,	the	moment	conditions	required	in	the	two	central	limit	theorems	
(Theorems	5	and	6)	exclude	the	case	where	δi > 0.

limn→∞ fn1 ⊗ fn2 ⊗ ⋯ ⊗ fnn(𝛼) = G2K∕s(𝛼)
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To	overcome	the	difficulty	caused	by	a	nonzero	δ,	we	start	by	observing	the	useful	fact	that

This	decomposition,	along	with	the	commutative	and	associative	properties	of	the	tensor	product,	
shows

This	identity	allows	us	to	work	on	the	ɛ	part	and	δ	part	separately.	In	short,	the	ɛ	part	f𝜀1,0 ⊗ ⋯ ⊗ f𝜀n,0	
now	can	be	approximated	by	G√

�2
1
+⋯+�2n

	by	invoking	Theorem	6.	For	the	δ	part,	we	can	iteratively	
apply	the	rule

to	obtain	 f0,𝛿1 ⊗ ⋯ ⊗ f0,𝛿n = f0,1−(1−𝛿1)(1−𝛿2)⋯(1−𝛿n)
.	This	rule	is	best	seen	via	the	interesting	fact	

that	f0,δ	is	the	trade-	off	function	of	shifted	uniform	distributions	T(U[0, 1], U[δ, 1 + δ]).
Now,	a	central	limit	theorem	for	(ɛ, δ)-	DP	is	just	a	stone's	throw	away.	In	what	follows,	the	

privacy	parameters	ɛ	and	δ	are	arranged	in	a	triangular	array	{(�ni, �ni) : 1 ≤ i ≤ n}∞
n=1

.

Theorem 7 Assume

for some nonnegative constants μ, δ as n → ∞. Then, we have

uniformly over [0, 1] as n → ∞.

The	proof	of	this	theorem	is	provided	in	Appendix	D.	The	assumptions	concerning	{δni}	give	
rise	to	1 − (1 − δn1)(1 − δn2)⋯(1 − δnn) → 1 − e−δ.	In	general,	tensoring	with	f0,δ	is	equivalent	to	
scaling	the	graph	of	the	trade-	off	function	f	toward	the	origin	by	a	factor	of	1 − δ.	This	property	
is	specified	by	the	following	formula,	and	we	leave	its	proof	to	Appendix	D:

In	particular,	f ⊗ f0,δ	is	symmetric	if	f	is	symmetric.	Note	that	Equations	(10)	and	(11)	can	be	deduced	
by	the	formula	above.

This	 theorem	 interprets	 the	 privacy	 level	 of	 the	 composition	 using	 Gaussian	 and	 uniform	
distributions.	Explicitly,	the	theorem	demonstrates	that,	based	on	the	released	information	of	the	
composed	mechanism,	distinguishing	between	any	neighbouring	data	sets	is	at	least	as	hard	as	
distinguishing	between	the	following	two	bivariate	distributions:

(10)f𝜀,𝛿 = f𝜀,0 ⊗ f0,𝛿 .

f𝜀1,𝛿1 ⊗⋯⊗ f𝜀n,𝛿n = (f𝜀1,0 ⊗⋯⊗ f𝜀n,0)⊗ (f0,𝛿1 ⊗⋯⊗ f0,𝛿n).

(11)f0,𝛿1 ⊗ f0,𝛿2 = f0,1−(1−𝛿1)(1−𝛿2)

n∑
i=1

�2ni → �2, max
1≤ i≤n �ni → 0,

n∑
i=1

�ni → �, max
1≤ i≤n �ni → 0

f𝜀n1,𝛿n1 ⊗⋯⊗ f𝜀nn,𝛿nn → G𝜇 ⊗ f0,1−e−𝛿

(12)f ⊗ f0,𝛿(𝛼) =

{
(1−𝛿) ⋅ f (

𝛼

1−𝛿
), 0≤𝛼≤1−𝛿

0, 1−𝛿≤𝛼≤1.

 (0, 1) ×U[0, 1] versus  (�, 1) ×U[1 − e−� , 2 − e−�].
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We	note	that	for	small	δ,	e−δ ≈ 1 − δ.	So	U[1 − e−δ, 2 − e−δ] ≈ U[δ, 1 + δ].
This	approximation	of	the	tensor	product	f𝜀n1, 𝛿n1 ⊗ ⋯ ⊗ f𝜀nn, 𝛿nn	using	simple	distributions	is	

important	from	the	viewpoint	of	computational	complexity.	Murtagh	and	Vadhan	(2016)	showed	
that,	given	a	collection	of	{(�i, �i)}ni=1,	finding	the	smallest	ɛ	such	that	 f𝜀,𝛿 ≤ f𝜀1, 𝛿1 ⊗ ⋯ ⊗ f𝜀n, 𝛿n	
is	#P-	hard	for	any	δ	(#P	is	a	complexity	class	that	is	‘even	harder	than’	NP;	see,	e.g.	Ch.	9.	of	Arora	
&	Barak,	2009).	From	the	dual	perspective	(see	Section	2.4),	this	negative	result	is	equivalent	to	
the	#P-	hardness	of	evaluating	the	convex	conjugate	(f𝜀1, 𝛿1 ⊗ ⋯ ⊗ f𝜀n,𝛿n)

∗	at	any	point.	For	com-
pleteness,	we	remark	that	Murtagh	and	Vadhan	(2016)	provided	an	FPTAS	(an	approximation	
algorithm	is	called	a	fully	polynomial-	time	approximation	scheme	(FPTAS)	if	its	running	time	is	
polynomial	in	both	the	input	size	and	the	inverse	of	the	relative	approximation	error;	see,	e.g.,	
Ch.	8.	of	Vazirani,	2013)	to	approximately	find	the	smallest	ɛ	in	O(n3)	time	for	a	single δ.	In	com-
parison,	Theorem	 7	 offers	 a	 global	 approximation	 of	 the	 tensor	 product	 in	 O(n)	 time	 using	 a	
closed-	form	expression,	subsequently	enabling	an	analytical	approximation	of	the	smallest	ɛ	for	
each	δ.

That	being	said,	Theorem	7	remains	silent	on	the	approximation	error	in	applications	
with	 a	 moderately	 large	 number	 of	 (ɛ,  δ)-	DP	 mechanisms.	 Alternatively,	 we	 can	 apply	
Theorem	5	to	obtain	a	non-	asymptotic	normal	approximation	to	 f𝜀1,0 ⊗ ⋯ ⊗ f𝜀n,0	and	use	
γ	to	specify	the	approximation	error.	It	can	be	shown	that	� = O(1∕

√
n)	under	mild	condi-

tions	(Corollary	D.7).	This	bound,	however,	is	not	sharp	enough	for	tight	privacy	guaran-
tees	if 	n	is	not	too	large	(note	that	1∕

√
n ≈ 0.14	if 	n = 50,	for	which	exact	computation	is	

already	challenging,	 if 	possible	at	all).	Surprisingly,	 the	 following	 theorem	establishes	a	
O(1/n)	bound,	 thereby	 ‘beating’	 the	classical	Berry–	Esseen	bound.	The	proof	 is	given	 in	
Appendix	D.

Theorem 8 Fix μ > 0 and let � = �∕
√
n. There is a constant c > 0 that only depends on μ satisfying

for all n ⩾ 1 and c/n ≤ α ≤ 1 − c/n.

As	with	Theorem	7,	this	theorem	can	be	extended	to	approximate	DP	(δ ≠ 0)	by	making	use	of	
the	decomposition	(10).	Our	simulation	studies	suggest	that	c ≈ 0.1	for	μ = 1,	which	is	best	illus-
trated	in	the	right	panel	of	Figure	5.	Despite	a	fairly	small	n=10,	the	difference	between	G1	and	
its	target	 f⊗n

𝜀,0
	is	less	than	0.013	in	the	pointwise	sense.	For	completeness,	it	is	worthwhile	men-

tioning	that	a	better	approximation	can	be	obtained	by	using	the	Edgeworth	expansion	in	place	
of	the	central	limit	theorem	(Zheng	et al.,	2020).	Interestingly,	our	numerical	evidence	suggests	
the	same	O(1/n)	rate	under	inhomogeneous	composition,	provided	that	ɛ1, …, ɛn	are	roughly	the	
same	size.	A	formal	proof,	or	even	a	quantitative	statement	of	this	observation,	constitutes	an	
interesting	problem	for	future	investigation.

In	 closing	 this	 section,	 we	 highlight	 some	 novelties	 in	 the	 proof	 of	 Theorem	 8.	 Denoting	
p� =

1

1+e�
	and	q� =

e�

1+e�
,	Kairouz	et al.	(2017)	presented	a	very	useful	expression	(rephrased	in	

our	framework):

where	B(n, p)	denotes	the	binomial	distribution	with	n	trials	and	success	probability	p.	However,	
directly	approximating	 f⊗n

𝜀,0
	through	these	two	binomial	distributions	is	unlikely	to	yield	an	O(1/n)	

G𝜇

(
𝛼 +

c

n

)
−
c

n
≤ f⊗n

𝜀,0
(𝛼) ≤ G𝜇

(
𝛼 −

c

n

)
+
c

n

f⊗n
𝜀,0

= T(B(n, p𝜀),B(n, q𝜀)),
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bound	because	the	Berry–	Esseen	bound	is	rate-	optimal	for	binomial	distributions.	Our	analysis,	in-
stead,	rests	crucially	on	a	certain	smoothing	effect	that	comes	for	free	in	testing	between	the	two	
distributions.	It	 is	analogous	to	 the	continuity	correction	for	normal	approximations	to	binomial	
probabilities.	See	the	technical	details	in	Appendix	D.

4 |  AMPLIFYING PRIVACY BY SUBSAMPLING

Subsampling	is	often	used	prior	to	a	private	mechanism	M	as	a	way	to	amplify	privacy	guaran-
tees.	Specifically,	we	can	construct	a	smaller	data	set	S̃	by	flipping	a	fair	coin	for	each	individual	
in	the	original	data	set	S	to	decide	whether	the	individual	is	included	in	S̃.	This	subsampling	
scheme	roughly	shrinks	the	data	set	by	half	and,	therefore,	we	would	expect	that	the	induced	
mechanism	 applied	 to	 S̃	 is	 about	 twice	 as	 private	 as	 the	 original	 mechanism	 M.	 Intuitively	
speaking,	this	privacy	amplification	is	due	to	the	fact	that	every	individual	enjoys	perfect	pri-
vacy	if	the	individual	is	not	included	in	the	resulting	data	set	S̃,	which	happens	with	probability	
50%.

The	claim	above	was	first	formalized	in	Kasiviswanathan	et al.	(2011)	for	(ɛ, δ)-	DP.	Such	a	
privacy	 amplification	 property	 is,	 unfortunately,	 no	 longer	 true	 for	 the	 most	 natural	 previous	
relaxations	of	differential	privacy	aimed	at	recovering	precise	compositions	(like	concentrated	
differential	privacy	(CDP)	(Bun	&	Steinke,	2016;	Dwork	&	Rothblum,	2016)).	Further	modifica-
tions	such	as	truncated	CDP	(Bun	et al.,	2018a)	have	been	introduced	primarily	to	remedy	this	
deficiency	of	CDP—	but	at	the	cost	of	extra	complexity	in	the	definition.	Other	relaxations	like	
Rényi	differential	privacy	(Mironov,	2017)	can	be	shown	to	satisfy	a	form	of	privacy	amplification	
by	subsampling,	but	both	the	analysis	and	the	statement	are	complex	(Wang	et al.,	2018).

In	this	section,	we	show	that	these	obstacles	can	be	overcome	by	our	hypothesis	testing	based	
relaxation	 of	 differential	 privacy.	 Explicitly,	 our	 main	 result	 is	 a	 simple,	 general	 and	 easy-	to-	
interpret	subsampling	theorem	for	f-	DP.	Somewhat	surprisingly,	our	theorem	significantly	im-
proves	on	the	classical	subsampling	theorem	for	privacy	amplification	in	the	(ɛ, δ)-	DP	framework	
(Ullman,	2017).	Note	that	this	classical	theorem	continues	to	use	(ɛ, δ)-	DP	to	characterize	the	
subsampled	mechanism.	However,	(ɛ, δ)-	DP	is	simply	not	expressive	enough	to	capture	the	am-
plification	of	privacy.

4.1 | A subsampling theorem

Given	an	integer	1 ≤ m ≤ n	and	a	data	set	S	of	n	individuals,	let	������m(S)	be	a	subset	of	S	that	is	
chosen	uniformly	at	random	among	all	the	m-	sized	subsets	of	S.	For	a	mechanism	M	defined	on	
Xm,	we	call	M(������m(S))	the	subsampled	mechanism,	which	takes	as	input	an	n-	sized	data	set.	
Formally,	we	use	M ∘ ������m	to	denote	this	subsampled	mechanism.	To	clear	up	any	confusion,	
note	that	intermediate	result	������m(S)	is	not	released	and,	in	particular,	this	is	different	from	
the	composition	in	Section	3.

In	brief,	our	main	theorem	shows	that	the	privacy	bound	of	the	subsampled	mechanism	in	the	
f-	DP	framework	is	given	by	an	operator	acting	on	trade-	off	functions.	To	introduce	this	operator,	
write	the	convex	combination	fp := pf + (1 − p) Id	for	0 ≤ p ≤ 1,	where	Id(x) = 1 − x.	Note	that	the	
trade-	off	function	fp	is	asymmetric	in	general.

Definition 6	 For	any	0 ≤ p ≤ 1,	define	the	operator	Cp	acting	on	trade-	off	functions	as
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We	call	Cp	the	p-	sampling	operator.

Above,	the	inverse	 f −1p 	is	defined	in	Equation	(3).	The	biconjugate	min{fp, f −1p }∗∗	is	derived	by	
applying	the	conjugate	as	defined	in	Equation	(7)	twice	to	min{fp, f −1p }.	For	the	moment,	take	for	
granted	the	fact	that	Cp(f)	is	a	symmetric	trade-	off	function.

Now,	we	present	the	main	theorem	of	this	section.	Section	4.2	is	devoted	to	proving	this	result.

Theorem 9 If M is f- DP on Xm, then the subsampled mechanism M ∘ ������m is Cp(f)- DP on Xn, 
where the sampling ratio p = m

n
.

Appreciating	this	theorem	calls	for	a	better	understanding	of	the	operator	Cp.	In	effect,	Cp	
performs	a	 two-	step	 transformation:	 symmetrization	 (taking	 the	minimum	of	 fp	and	 its	 in-
verse	 f −1p )	and	convexification	(taking	the	largest	convex	lower	envelope	of	min{fp, f −1p }).	The	
convexification	step	is	seen	from	convex	analysis	that	the	biconjugate	h**	of	any	function	h	is	
the	greatest	convex	lower	bound	of	h.	As	such,	Cp(f)	is	convex	and,	with	a	bit	more	analysis,	
Proposition	 1	 ensures	 that	 Cp(f)	 is	 indeed	 a	 trade-	off	 function.	 As	 an	 aside,	
Cp(f ) ≤ min{fp, f

−1
p } ≤ fp.	See	Figure	6	for	a	graphical	illustration.

Next,	the	following	facts	concerning	the	p-	sampling	operator	qualitatively	illustrate	this	pri-
vacy	amplification	phenomenon.

1.	 If	 0 ≤  p ≤  q ≤  1	 and	 f	 is	 symmetric,	 we	 have	 f  =  C1(f) ≤  Cq(f) ≤  Cp(f) ≤  C0(f)  =  Id.	 That	
is,	 as	 the	 sampling	 ratio	 declines	 from	 1	 to	 0,	 the	 privacy	 guarantee	 interpolates	 mono-
tonically	 between	 the	 original	 f	 and	 the	 perfect	 privacy	 guarantee	 Id.	 This	 monotonicity	
follows	 from	 the	 fact	 that	 g  ≥  h	 is	 equivalent	 to	 g−1  ≥  h−1	 for	 any	 trade-	off	 functions	 g	
and	 h.

Cp(f ): =min{fp, f
−1
p }∗∗.

F I G U R E  6 	 The	action	of	Cp.	Left	panel:	f = G1.8,	p = 0.35.	Right	panel:	ɛ = 3,	δ = 0.1,	p = 0.2.	The	
subsampling	Theorem	9	results	in	a	significantly	tighter	trade-	off	function	compared	to	the	classical	theorem	for	
(ɛ, δ)-	DP	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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2.	 If	two	trade-	off	functions	f	and	g	satisfy	f ≥ g,	then	Cp(f) ≥ Cp(g).	This	means	that	if	a	mecha-
nism	is	more	private	than	the	other,	using	the	same	sampling	ratio,	the	subsampled	mecha-
nism	of	 the	 former	 remains	more	private	 than	 that	of	 the	 latter,	at	 least	 in	 terms	of	 lower	
bounds.

3.	 For	any	0 ≤ p ≤ 1,	Cp(Id) = Id.	That	is,	perfect	privacy	remains	perfect	privacy	with	subsampling.

Explicitly,	we	provide	a	formula	to	calculate	Cp(f)	for	a	symmetric	trade-	off	function	f.	Letting	
x*	be	the	unique	fixed	point	of	f,	that	is	f(x*) = x*,	we	have

This	expression	is	almost	self-	evident	from	the	left	panel	of	Figure	6.	Nevertheless,	a	proof	of	this	
formula	is	given	in	Appendix	E.	This	formula,	together	with	Theorem	9,	allows	us	to	get	a	closed-	
form	characterization	of	the	privacy	amplification	for	(ɛ, δ)-	DP.

Corollary 3 If M is (ɛ, δ)- DP on Xm, then the subsampled mechanism M ∘ ������m is Cp(fɛ, δ)- DP 
on Xn, where

Above, �� = log(1 − p + pe�), δ′ = pδ and p = m

n
.

For	comparison,	we	now	present	the	existing	bound	on	the	privacy	amplification	by	subsam-
pling	for	(ɛ,δ)-	DP.	To	be	self-	contained,	Appendix	E	gives	a	proof	of	this	result,	which	primarily	
follows	Ullman	(2017).

Lemma 2 (Ullman,	2017). If M is (ɛ, δ)- DP, then M ∘ ������m is (�′, �′)- DP with �′ and δ′ defined 
in Corollary 3.

Using	 the	 language	 of	 the	 f-	DP	 framework,	 Lemma	 2	 states	 that	 M  ∘ ������m	 is	 f�′,�′-	DP.	
Corollary	3	improves	on	Lemma	2	because,	as	is	clear	from	Equation	(14),	Cp(f�,�) ≥ f�′,�′.	The	
right	panel	of	Figure	6	illustrates	Lemma	2	and	our	Corollary	3	for	ɛ = 3,	δ = 0.1	and	p = 0.2.	
In	effect,	the	improvement	is	captured	by	the	shaded	triangle	enclosed	by	Cp(fɛ, δ)	and	 f�′,�′,	
revealing	that	the	minimal	sum	of	type	I	and	type	II	errors	in	distinguishing	two	neighbour-
ing	data	sets	with	subsampling	can	be	significantly	 lower	 than	the	prediction	of	Lemma	2.	
This	gain	is	only	made	possible	by	the	flexibility	of	trade-	off	functions	in	the	sense	that	Cp(fɛ,δ)	
cannot	be	expressed	within	 the	(ɛ, δ)-	DP	framework.	The	unavoidable	 loss	 in	 the	(ɛ, δ)-	DP	
representation	of	the	subsampled	mechanism	is	compounded	when	analysing	the	composi-
tion	of	many	private	mechanisms.

In	the	next	subsection,	we	prove	Theorem	9	by	making	use	of	Lemma	2.	Its	proof	implies	that	
Theorem	9	holds	for	any	subsampling	scheme	for	which	Lemma	2	is	true.	In	particular,	it	holds	

(13)Cp(f )(x) =

⎧⎪⎨⎪⎩

fp(x), x∈ [0, x∗]

x∗+ fp(x
∗)−x, x∈ [x∗, fp(x

∗)]

f −1p (x), x∈ [fp(x
∗), 1].

(14)Cp(f�,�)(�) =max
{
f��,��(�), 1 − p� − p

e� − 1

e� + 1
− �

}
.
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for	the	subsampling	scheme	described	at	the	beginning	of	this	section,	that	is,	independent	coin	
flips	for	every	data	item.

4.2 | Proof of the subsampling theorem

The	proof	strategy	is	as	follows.	First,	we	convert	the	f-	DP	guarantee	into	an	infinite	collection	
of	(ɛ, δ)-	DP	guarantees	by	taking	a	dual	perspective	that	is	enabled	by	Proposition	6.	Next,	by	
applying	the	classical	subsampling	theorem	(that	is,	Lemma	2)	to	these	(ɛ, δ)-	DP	guarantees,	we	
conclude	that	the	subsampled	mechanism	satisfies	a	new	infinite	collection	of	(ɛ, δ)-	DP	guaran-
tees.	Finally,	Proposition	5	allows	us	to	convert	these	new	privacy	guarantees	back	into	an	 f̃ -	DP	
guarantee,	where	 f̃ 	can	be	shown	to	coincide	with	Cp(f).

Proof of Theorem 9 Provided	that	M	is	f-	DP,	from	Proposition	6	it	follows	that	M	is	(ɛ, δ(ɛ))-	DP	
with	δ(ɛ) = 1 + f*(−eɛ)	for	all	ɛ ⩾ 0.	Making	use	of	Lemma	2,	the	subsampled	mechanism	
M ∘ ������m	satisfies	the	following	collection	of	(�′, �′)-	DP	guarantees	for	all	ɛ ⩾ 0:

Eliminating	the	variable	ɛ	from	the	two	parametric	equations	above,	we	can	relate	�′	to	δ′	using

which	is	proved	in	Appendix	E.	The	remainder	of	the	proof	is	devoted	to	showing	that	(�′, �′)-	DP	
guarantees	for	all	�′ ≥ 0	is	equivalent	to	the	Cp(f)-	DP	guarantee.

At	 first	 glance,	 Equation	 (15)	 seems	 to	 enable	 the	 use	 of	 Proposition	 6.	 Unfortunately,	
that	would	be	 invalid	because	 fp	 is	asymmetric.	To	 this	end,	we	need	 to	extend	Proposition	6	
to	general	 trade-	off	 functions.	To	avoid	conflicting	notation,	 let	g	 be	a	generic	 trade-	off	 func-
tion,	not	necessarily	symmetric.	Denote	by	x	be	the	smallest	point	such	that	g′(x) = −1,	that	is,	
x = inf{x ∈ [0, 1] : g�(x) = − 1}.	 As	 a	 special	 instance	of	 Proposition	E.1	 in	 the	 appendix,	 the	
following	result	serves	our	purpose.

Proposition 8 If g(x) ⩾ x and a mechanism M is (ɛ, 1 + g*(−eɛ))- DP for all ɛ ⩾ 0, then M is 
min{g, g−1}**- DP.

The	proof	of	the	present	theorem	would	be	complete	if	Proposition	8	can	be	applied	to	the	
collection	of	privacy	guarantees	in	Equation	(15)	for	fp.	To	use	Proposition	8,	it	suffices	to	verify	
the	condition	 fp(x) ⩾ x	where	x	is	the	smallest	point	such	that	f �p(x) = − 1.	Let	x*	be	the	(unique)	
fixed	point	of	f.	To	this	end,	we	collect	a	few	simple	facts:

•	 First,	f′(x*) = −1.	This	is	because	the	graph	of	f	is	symmetric	with	respect	to	the	45∘	line	passing	
through	the	origin.

•	 Second,	x ≤ x∗.	This	is	because	 f �p(x
∗) = pf �(x∗) + (1 − p) Id�(x∗) = − 1	and,	by	definition,	x	

can	only	be	smaller.

�� = log(1 − p + pe�), �� = p
(
1 + f ∗( − e�)

)
.

(15)�� = 1 + f ∗p ( − e�
�
),
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With	these	facts	in	place,	we	get

by	recognizing	that	fp	is	decreasing	and	fp ≥ f.	Hence,	the	proof	is	complete.

5 |  APPLICATION: PRIVACY ANALYSIS OF STOCHASTIC 
GRADIENT DESCENT

One	of	the	most	important	algorithms	in	machine	learning	and	optimization	is	stochastic	gra-
dient	 descent	 (SGD).	 This	 is	 an	 iterative	 optimization	 method	 used	 to	 train	 a	 wide	 variety	 of	
models,	for	example,	deep	neural	networks.	SGD	has	also	served	as	an	important	benchmark	in	
the	development	of	private	optimization:	as	an	iterative	algorithm,	the	tightness	of	its	privacy	
analysis	crucially	depends	on	the	tightness	with	which	composition	can	be	accounted	for.	The	
analysis	also	crucially	requires	a	privacy	amplification	by	subsampling	argument.

The	first	asymptotically	optimal	analysis	of	differentially	private	SGD	was	given	by	Bassily	
et al.	 (2014).	Because	of	 the	 inherent	 limits	of	 (ɛ, δ)-	DP,	however,	 this	analysis	 stops	 short	of	
giving	meaningful	privacy	bounds	for	realistically	sized	data	sets.	This	is	in	part	what	motivated	
the	development	of	divergence	based	relaxations	of	differential	privacy.	Unfortunately,	these	re-
laxations	cannot	be	directly	applied	to	the	analysis	of	SGD	due	to	the	lack	of	a	privacy	ampli-
fication	by	subsampling	theorem.	In	response,	Abadi	et al.	(2016)	circumvented	this	challenge	
by	developing	the	moments	accountant—	a	numeric	technique	tailored	specifically	to	repeated	
application	of	subsampling,	followed	by	a	Gaussian	mechanism—	to	give	privacy	bounds	for	SGD	
that	are	strong	enough	to	give	non-	trivial	guarantees	when	training	deep	neural	networks	on	real	
data	sets.	But	this	analysis	is	ad-	hoc	in	the	sense	that	it	uses	a	tool	designed	specifically	for	the	
analysis	of	SGD.

In	this	section,	we	use	the	general	tools	we	have	developed	so	far	to	give	a	simple	and	im-
proved	analysis	of	the	privacy	of	SGD.	In	particular,	the	analysis	rests	crucially	on	the	composi-
tional	and	subsampling	properties	of	f-	DP.

5.1 | Stochastic gradient descent and its privacy analysis

Letting	S = (x1, …, xn)	denote	the	data	set,	consider	minimizing	the	empirical	risk

over	the	parameter	θ,	where	L(θ, xi)	denotes	a	loss	function.	At	iteration	t,	a	set	It	of	size	m	is	selected	
uniformly	at	random	from	{1, 2, …, n}.	Taking	learning	rate	ηt,	SGD	seeks	to	minimize	the	empirical	
risk	by	running

from	an	initial	point	θ0.

fp(x) ⩾ fp(x
∗) ⩾ f (x∗) = x∗ ⩾ x

1

n

n∑
i=1

L(�, xi)

�t+1 = �t − �t ⋅
1

m

∑
i∈ It

∇�L(�t , xi)
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A	private	variant	of	this	optimization	algorithm	is	described	in	Algorithm	1.	We	refer	to	this	pri-
vate	algorithm	as	NoisySGD,	which	can	be	viewed	as	a	repeated	composition	of	Gaussian	mecha-
nisms	operating	on	subsampled	data	sets.	To	analyse	the	privacy	of	NoisySGD,	we	start	by	building	
up	the	privacy	properties	from	the	inner	loop.	Let	V	be	the	vector	space	where	parameter	θ	lives	in	
and	M : Xm × V → V	be	the	mechanism	that	executes	lines	4–	7	in	Algorithm	1.	Here	m	denotes	the	
batch	size.	In	effect,	what	M	does	in	iteration	t	can	be	expressed	as

where	SIt	is	the	subset	of	the	data	set	S	indexed	by	It.	Next,	we	turn	to	the	analysis	of	the	subsampling	
step	(line	3)	and	use	M̃	to	denote	its	composition	with	M,	that	is,	M̃ =M ◦ ������m.	Taken	together,	
M̃	executes	lines	3–	7	and	maps	from	Xn × V	to	V.

The	mechanism	we	are	ultimately	interested	in

is	simply	the	composition	of	T	copies	of	M̃.	To	see	this	fact,	note	that	the	trajectory	(θ1, θ2, …, θT)	is	
obtained	by	iteratively	running

for	j = 0, …, T − 1.	Let	M	be	f-	DP.	Straightforwardly,	M̃	is	Cm/n(f)-	DP	by	Theorem	9.	Then,	from	the	
composition	theorem	(Theorem	4),	we	can	readily	prove	that	NoisySGD	is	Cm/n(f)⊗T-	DP.
Hence,	it	suffices	to	give	a	bound	on	the	privacy	of	M.	For	simplicity,	we	now	focus	on	a	single	
step	and	drop	the	subscript	t.	Recognizing	that	changing	one	of	the	m	data	points	only	affects	one	
v(i),	the	sensitivity	of	 1

m

∑
iv
(i)
t 	is	at	most	2C

m
	due	to	the	clipping	operation.	Making	use	of	Theorem	

1,	 	adding	Gaussian	noise	N(0, �2 ⋅ 4C
2

m2 I)	 to	 the	average	gradient	 renders	 this	 step	 1
�
-	GDP.	Since	

that	the		gradient	update	following	the	gradient	averaging	step	is	deterministic,	we	conclude	that	M	
	satisfies	1

�
-	GDP.

M(SIt , �t) = �t+1,

��������:Xn
→V ×V ×⋯×V

S ↦ (�1, �2,…, �T )

�j+1 = M̃(S, �j)
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In	summary,	the	discussion	above	has	proved	the	following	theorem:

Theorem 10 Algorithm 1 is Cm∕n(G𝜎−1 )
⊗T- DP.

To	clear	up	any	confusion,	we	remark	that	this	Cm∕n(G𝜎−1 )
⊗T-	DP	mechanism	does	not	release	

the	subsampled	indices.
The	use	of	Theorem	10	relies	on	an	efficient	evaluation	of	Cm∕n(G𝜎−1 )

⊗T.	Our	central	limit	theo-
rems	provide	an	analytical	approach	to	approximating	this	tensor	product	and	the	approximation	is	ac-
curate	for	large	T.	The	next	two	subsections	present	two	such	results,	corresponding	to	our	two	central	
limit	theorems	(Theorems	5	and	6),	respectively.	An	asymptotic	privacy	analysis	of	NoisySGD	is	given	
in	Section	5.2	by	developing	a	general	limit	theorem	for	composition	of	subsampled	mechanisms,	and	
an	illustration	of	this	result	is	shown	in	Figure	7.	A	Berry–	Esseen	type	analysis	is	developed	in	Section	
5.3.	The	implementation	of	our	privacy	analysis	of	NoisySGD	is	available	in	the	TensorFlow pri-
vacy	package	(https://github.com/tensorflow/privacy);	see	details	in	https://github.com/tenso	rflow/	
priva	cy/blob/maste	r/tenso	rflow_privacy/privacy/analysis/gdp_accountant.py.

5.2 | Asymptotic privacy analysis

In	this	subsection,	we	first	consider	the	limit	of	Cp(f)⊗T	for	a	general	trade-	off	function	f,	then	
plug	in	f = G�−1	for	the	analysis	of	NoisySGD.	The	more	general	approach	is	useful	for	analysing	
other	iterative	algorithms.

Recall	from	Section	4	that	a	p-	subsampled	f-	DP	mechanism	is	Cp(f)-	DP,	where	Cp(f)	is	defined	as

Cp(f )(x) =

⎧⎪⎨⎪⎩

fp(x), x∈ [0, x∗]

x∗+ fp(x
∗)−x, x∈ [x∗, fp(x

∗)]

f −1p (x), x∈ [fp(x
∗), 1],

F I G U R E  7 	 Comparison	of	the	Gaussian	differential	privacy	bounds	derived	from	our	method,	and	the	
(ɛ, δ)-	DP	bounds	derived	using	the	moments	accountant	(Abadi	et al.,	2016),	which	is	essentially	based	on	Rényi	
differential	privacy	(Mironov,	2017).	All	three	experiments	run	Algorithm	1	on	the	entire	MNIST	data	set	with	
n = 60,000	data	points,	batch	size	m = 256,	learning	rates	ηt	set	to	0.25,	0.15	and	0.25,	respectively,	and	clipping	
thresholds	C	set	to	1.5,	1.0	and	1.5,	respectively.	The	red	lines	are	obtained	via	Corollary	4,	while	the	blue	
dashed	lines	are	produced	by	the	tensorflow/privacy	library.	See	https://github.com/tenso	rflow/	privacy	for	the	
details	of	the	setting	and	more	experiments	in	follow-	up	work	(Bu	et al.,	2019)	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

https://github.com/tensorflow/privacy/blob/master/tensorflow
https://github.com/tensorflow/privacy/blob/master/tensorflow
https://github.com/tensorflow/privacy
https://onlinelibrary.wiley.com/
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where	x*	is	the	unique	fixed	point	of	f.	We	will	let	the	sampling	fraction	p	tend	to	0	as	T	approaches	
infinity.	In	the	following	theorem,	a2+	is	a	short-	hand	for	(max{a, 0})2.

Theorem 11 Suppose f is a symmetric trade- off function such that f(0)  =  1 and 
∫ 10 (f �(x)+1)4 dx < +∞. Furthermore, assume p

√
T → p0 as T  →  ∞ for some constant 

p0 > 0. Then we have the uniform convergence

as T → ∞, where

The	proof	is	deferred	to	Appendix	F.	This	theorem	has	implications	for	the	design	of	iterative	
private	mechanisms	involving	subsampling	as	a	subroutine.	One	way	to	bound	the	privacy	of	
such	a	mechanism	is	to	let	the	sampling	ratio	p	go	to	zero	as	the	total	number	of	iterations	T	goes	
to	infinity.	The	theorem	says	that	the	correct	scaling	between	the	two	values	is	p ∼ 1∕

√
T 	and,	

furthermore,	gives	an	explicit	form	of	the	limit.
In	order	to	analyse	NoisySGD,	we	need	to	compute	the	quantity	�2+(G�).	This	can	be	done	by	

directly	working	with	its	definition.	In	Appendix	F,	we	provide	a	different	approach	by	relating	
�2+(f )	to	χ2-	divergence.

Lemma 3 We have

When	using	SGD	to	train	large	models,	we	typically	perform	a	very	large	number	of	iterations,	
so	it	is	reasonable	to	consider	the	parameter	regime	in	which	n→∞, T→∞.	The	batch	size	can	also	
vary	with	these	quantities.	The	following	result	is	a	direct	consequence	of	Theorems	10	and	11	
and	Lemma	3.

Corollary 4 If m
√
T∕n→ c for a constant c > 0, then NoisySGD is asymptotically μ- GDP with

The	condition	required	in	this	theorem	is	more	general	than	that	required	in	the	analysis	
of	private	SGD	by	Bassily	et al.	(2014),	which	assumes	m = 1	and	T = O(n2).	Moreover,	we	
note	that	m

n
⋅

√
T 	 in	deep	learning	research	is	generally	quite	small.	The	convention	in	this	

literature	is	to	reparameterize	the	number	of	gradient	steps	T	by	the	number	of	‘epochs’	E,	
which	is	the	number	of	sweeps	of	the	entire	data	set.	The	relationship	between	these	param-
eters	 is	 that	 E  =  Tm/n.	 In	 this	 reparameterization,	 our	 assumption	 is	 that	 Em/n  →  c2.	
Concretely,	the	AlexNet	(Krizhevsky	et al.,	2012)	sets	the	parameters	as	m = 128,	E ≈ 90	on	
the	ILSVRC-	2010	data	set	with	n ≈ 1.2 × 106,	leading	to	Em/n < 0.01.	Many	other	prominent	
implementations	also	lead	to	a	small	value	of	Em/n.	See	the	webpage	of	the	Gluon	CV	Toolkit	

Cp(f )
⊗T

→ G
p0

√
2𝜒2+(f )

�2
+
(f ) = ∫

1

0
(|f �(x)|−1)2

+
dx.

�2
+
(G�) = e�

2
⋅Φ(3�∕2) + 3Φ( − �∕2) − 2.

� =
√
2c ⋅

�
e�−2 ⋅Φ(1.5�−1) + 3Φ( − 0.5�−1) − 2.
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(He	et al.,	2018;	Zhang	et al.,	2019)	for	a	collection	of	such	hyperparameters	in	computer	vi-
sion	tasks.

5.3 | A Berry– Esseen privacy bound

Now,	we	apply	the	Berry–	Esseen	style	central	limit	theorem	(Theorem	5)	to	the	privacy	analy-
sis	of	NoisySGD,	highlighting	the	advantage	of	giving	sharp	privacy	guarantees.	However,	the	
shortcoming	is	that	the	expressions	that	it	yields	are	more	unwieldy:	they	are	computer	evalu-
able,	so	usable	in	implementations,	but	do	not	admit	simple	closed	forms.

The	individual	components	in	Theorem	5	have	have	the	form	Cp(Gμ)	with	p = m/n,	� = �−1	.	It	
suffices	to	evaluate	the	moment	functionals	on	Cp(Gμ).	This	is	done	in	the	following	lemma,	with	
its	proof	given	in	Appendix	F.

Lemma 4 Let Z(x) = log(p ⋅ e�x−�
2∕2 + 1 − p) and �(x) = 1√

2�
e−x

2∕2 be the density of the stan-

dard normal distribution. Then

By	plugging	these	expressions	into	Theorem	5,	we	get

Corollary 5 Let p = m/n, � = �−1 and

Then, NoisySGD is f- DP with f (�) =max{G�̃(� + �) − � , 0}.

We	remark	that	G�̃	can	be	set	to	0	in	(1, +∞)	so	that	f	is	well	defined	for	α > 1−γ.

6 |  DISCUSSION

In	this	paper,	we	have	introduced	a	new	framework	for	private	data	analysis	that	we	refer	to	as	
f-	differential	privacy,	which	generalizes	(ɛ, δ)-	DP	and	has	a	number	of	attractive	properties	that	
escape	the	difficulties	of	prior	work.	This	new	privacy	definition	uses	trade-	off	functions	of	hy-
pothesis	testing	as	a	measure	of	indistinguishability	of	two	neighbouring	data	sets	rather	than	a	

kl
(
Cp(G�)

)
= p ∫

+∞

�∕2
Z(x) ⋅

(
�(x−�)−�(x)

)
dx

�2
(
Cp(G�)

)
= ∫

+∞

�∕2
Z2(x) ⋅

(
p�(x−�)+ (2−p)�(x)

)
dx

�3
(
Cp(G�)

)
= ∫

+∞

�∕2

|||Z(x)−kl
(
Cp(G�)

)|||
3
⋅ (p�(x−�)+ (1−p)�(x)) dx

+∫
+∞

�∕2

|||Z(x)+kl
(
Cp(G�)

)|||
3
⋅�(x) dx.

�̃ =
2
√
T ⋅ kl

�
Cp(G�)

�
�

�2
�
Cp(G�)

�
− kl2

�
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0.56√
T
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Cp(G�)

�
�
�2

�
Cp(G�)

�
−kl2

�
Cp(G�)
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.
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few	parameters	as	in	prior	differential	privacy	relaxations.	Our	f-	DP	retains	an	interpretable	hy-
pothesis	testing	semantics	and	is	expressive	enough	to	losslessly	reason	about	composition,	post-	
processing	and	group	privacy	by	virtue	of	the	informativeness	of	trade-	off	functions.	Moreover,	
f-	DP	admits	a	central	limit	theorem	that	identifies	a	simple	and	single-	parameter	family	of	pri-
vacy	 definitions	 as	 focal:	 Gaussian	 differential	 privacy.	 Precisely,	 all	 hypothesis	 testing	 based	
definitions	of	privacy	converge	to	Gaussian	differential	privacy	in	the	limit	under	composition,	
which	implies	that	Gaussian	differential	privacy	is	the	unique	such	definition	that	can	tightly	
handle	composition.	The	central	limit	theorem	and	its	Berry–	Esseen	variant	give	a	tractable	ana-
lytical	approach	to	tightly	analysing	the	privacy	cost	of	iterative	methods	such	as	SGD.	Notably,	
f-	DP	is	dual	to	(ɛ, δ)-	DP	in	a	constructive	sense,	which	gives	the	ability	to	import	results	proven	
for	(ɛ, δ)-	DP.	This	powerful	perspective	allows	us	to	obtain	an	easy-	to-	use	privacy	amplification	
by	subsampling	theorem	for	f-	DP,	which	in	particular	significantly	improves	on	the	state-	of-	the-	
art	counterpart	in	the	(ɛ, δ)-	DP	setting.

We	see	several	promising	directions	for	future	work	using	and	extending	the	f-	DP	framework.	
First,	Theorem	8	can	possibly	be	extended	to	the	inhomogeneous	case	where	trade-	off	functions	
are	different	 from	each	other	 in	 the	composition.	Such	an	extension	would	allow	us	 to	apply	
the	central	 limit	 theorem	for	privacy	approximation	with	strong	finite-	sample	guarantees	to	a	
broader	 range	of	problems.	Second,	 it	would	be	of	 interest	 to	 investigate	whether	 the	privacy	
guarantee	of	the	subsampled	mechanism	in	Theorem	9	can	be	improved	for	some	trade-	off	func-
tions.	Notably,	we	have	shown	in	Appendix	E	that	this	bound	is	tight	if	the	trade-	off	function	
f = 0,	that	is,	the	original	mechanism	is	blatantly	non-	private.	Third,	the	notion	of	f-	DP	naturally	
has	a	local	realization	where	the	obfuscation	of	the	sensitive	information	is	applied	at	the	indi-
vidual	record	level.	In	this	setting,	what	are	the	fundamental	limits	of	estimation	with	local	f-	DP	
guarantees	(Duchi	et al.,	2018)?	In	light	of	Duchi	and	Ruan	(2018),	what	is	the	correct	complexity	
measure	in	local	f-	DP	estimation?	If	it	is	not	the	Fisher	information,	can	we	identify	an	alterna-
tive	to	the	Fisher	information	for	some	class	of	trade-	off	functions?	Moreover,	we	recognize	that	
an	adversary	in	differentially	private	learning	may	set	different	pairs	of	target	type	I	and	type	II	
errors.	For	example,	an	adversary	that	attempts	to	control	type	I	and	II	errors	at	10%	and	10%,	
respectively,	can	behave	very	differently	from	one	who	aims	to	control	the	two	errors	at	0.1%	and	
99%,	respectively.	An	important	question	is	to	address	the	trade-	offs	between	resources	such	as	
privacy	and	statistical	efficiency	and	target	type	I	and	type	II	errors	in	the	framework	of	f-	DP.

Finally,	we	wish	to	remark	that	f-	DP	can	possibly	offer	a	mathematically	tractable	and	flex-
ible	framework	for	minimax	estimation	under	privacy	constraints	(see,	for	example,	Bun	et al.,	
2018b;	Cai	et al.,	2019;	Dwork	et al.,	2015).	Concretely,	given	a	candidate	estimator	satisfying	
(ɛ,  δ)-	DP	 appearing	 in	 the	 upper	 bound	 and	 a	 possibly	 loose	 lower	 bound	 under	 the	 (ɛ,  δ)-	
DP	constraint,	we	can	 replace	 the	 (ɛ, δ)-	DP	constraint	by	 the	 f-	DP	constraint	where	 f	 is	 the	
tightest	trade-	off	function	characterizing	the	estimation	procedure.	As	is	clear,	the	f-	DP	con-
straint	is	more	stringent	than	the	(ɛ, δ)-	DP	constraint	by	recognizing	the	primal-	dual	conver-
sion	(see	Proposition	6).	While	the	upper	bound	remains	the	same	as	the	estimator	continues	
to	satisfy	the	new	privacy	constraint,	the	lower	bound	can	be	possibly	improved	due	to	a	more	
stringent	constraint.	It	would	be	of	great	interest	to	investigate	to	what	extent	this	f-	DP	based	
approach	 can	 reduce	 the	 gap	 between	 upper	 and	 lower	 bounds	 minimax	 estimation	 under	
privacy	constraints.

Ultimately,	the	test	of	a	privacy	definition	lies	not	just	in	its	power	and	semantics,	but	also	
in	its	ability	to	usefully	analyse	diverse	algorithms.	In	this	paper,	we	have	given	convincing	evi-
dence	that	f-	DP	is	up	to	the	task.	We	leave	the	practical	evaluation	of	this	new	privacy	definition	
to	future	work.
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7 |  SUPPLEMENTAL MATERIALS

Due	to	space	constraints,	we	have	relegated	proofs	of	 theorems	and	other	 technical	details	 to	
the	 on-	line	 appendices	 Appendix	 A–	Appendix	 F	 in	 the	 Supplement	 to	 ‘Gaussian	 Differential	
Privacy’.	Python	code	for	analysing	the	privacy	loss	of	SGD	in	the	f-	DP	framework	is	available	
at	 https://github.com/tenso	rflow/	priva	cy/blob/maste	r/tenso	rflow_privacy/privacy/analysis/
gdp_accountant.py.
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SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 in	 the	 online	 version	 of	 the	 article	 at	 the	
publisher’s	website.
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I	wholeheartedly	welcome	the	proposal	of	Dong,	Roth	and	Su	to	revisit	the	foundations	of	dif-
ferential	privacy	from	the	hypothesis	testing	point	of	view.	Designing	formal	privacy	definitions	
that	can	be	interpreted	by	relevant	stakeholders	and	decision	makers	is	a	necessary	condition	
for	adoption	outside	the	technical	literature,	and	basing	such	formulations	on	the	trade-	off	be-
tween	Type	I	and	Type	II	errors	in	a	classical	hypothesis	testing	problem	is	(probably)	as	close	
as	one	can	get	to	this	goal.	It	was	already	well	known	that	hypothesis	testing	interpretations	
can	be	derived	from	differential	privacy	and	some	of	its	variants,	but	the	present	work	makes	
an	interesting	twist:	it	introduces	new	privacy	definitions—	namely,	f-	DP	and	its	focal	instance	
Gaussian	DP—	where	hypothesis	testing	is	front	and	centre,	and	shows	this	has	many	interest-
ing	consequences.

The	first	remarkable	observation	is	that	these	new	definitions	capture	all	the	desirable	prop-
erties	 of	 prior	 differential	 privacy	 definitions	 (e.g.	 composition,	 amplification	 by	 sampling,	
Gaussian	mechanism)	in	a	tight	analytical	way.	This	should	be	contrasted	with	the	limitations	of	
other	well-	established	definitions;	for	example,	ε-	DP	cannot	accommodate	the	Gaussian	mech-
anism,	(ε,	δ)-	DP	leads	to	cumbersome	composition	formulas,	and	amplification	by	sampling	in	

https://doi.org/10.1111/rssb.12454
mailto:
mailto:borja.balle@gmail.com
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Rényi	DP	is	plagued	with	technical	difficulties.	On	a	qualitative	level,	we	care	about	these	prop-
erties	because	they	allow	us	to	analyse	complex	algorithms	in	terms	of	their	building	blocks.	
More	importantly,	having	a	definition	that	provides	quantitatively	tighter	privacy	guarantees	is	
crucial	when	tuning	hyperparameters	to	obtain	the	best	possible	trade-	off	between	privacy	and	
utility.

The	limit	theorems	for	composition	and	group	privacy	proved	in	the	paper	are	quite	interest-
ing,	most	notably	because	they	improve	our	understanding	of	these	phenomena	at	an	intuitive	
level	and	bring	to	light	some	underlying	regularities	in	operations	that	are	routinely	encountered	
in	differential	privacy.	In	particular,	the	focality	of	Gaussian	DP	under	the	composition	CLT	en-
ables	more	precise	back-	of-	the-	envelope	computations	in	the	course	of	algorithm	design,	and	the	
error	bounds	in	its	Berry–	Esseen	version	can	serve	as	the	building	block	for	novel,	more	efficient	
so-	called	privacy	accounting	algorithms.

On	a	more	technical	note,	I	was	surprised	by	the	significant	gap	between	the	privacy	ampli-
fication	properties	of	standard	DP	and	Gaussian	DP.	This	gap	suggests	we	might	not	yet	 fully	
understand	the	quantitative	properties	of	this	important	primitive,	and	point	to	interesting	di-
rections	 for	 future	 research.	 In	 more	 practical	 terms,	 understanding	 privacy	 amplification	 by	
sampling	is	key	to	provide	tight	guarantees	for	differentially	private	stochastic	gradient	descent	
(DP-	SGD)	algorithms.	The	analysis	of	this	algorithm	based	on	Gaussian	DP	is	very	illuminating	
in	terms	of	the	gap	with	respect	to	the	moments	accountant	technique.	And	although	this	gap	
can	 be	 reduced	 by	 considering	 the	 whole	 collection	 of	 (ε,	 δ(ε))-	DP	 guarantees	 that	 moments	
accountant	provide—	as	opposed	to	using	a	single	value	of	�	as	is	done	in	the	paper—	the	remain-
ing	gap	is	still	significant.	I	would	encourage	practitioners	to	take	note	of	this	and	start	using	
Gaussian	DP	accounting	in	their	DP-	SGD	implementations.

Overall,	I	think	it	is	fair	to	say	that	the	work	of	Dong,	Roth	and	Su	represents	a	significant	
leap	in	our	understanding	of	the	hypothesis	testing	viewpoint	on	differential	privacy.	More	im-
portantly,	it	indicates	that	this	point	of	view	has	many	other	practical	benefits	besides	the	obvious	
interpretability	gains.	I	look	forward	to	seeing	more	Guassian	DP	analyses	of	complex	privacy-	
preserving	algorithms	in	the	coming	years.

How to cite this article:	Balle,	B.	Proposer	of	the	vote	of	thanks	to	Dong	et al.	and	
contribution	to	the	Discussion	of	‘Gaussian	Differential	Privacy’.	J R Stat Soc Series B.	
2022;	84,	3–	54.	https://doi.org/10.1111/rssb.12455

https://doi.org/10.1111/rssb.12455


   | 39DISCUSSION	CONTRIBUTION

DOI:	10.1111/rssb.12456		

Seconder of the vote of thanks to Dong et al. 
and contribution to the Discussion of ‘Gaussian 
Differential Privacy’

Marco Avella- Medina

Department	of	Statistics,	Columbia	University,	New	York,	NY,	USA

Correspondence
Marco	Avella-	Medina,	Columbia	University,	Department	of	Statistics,	New	York,	NY,	USA.
Email:	marco.avella@columbia.edu

I	 congratulate	 the	 authors	 for	 a	 remarkable	 foundational	 paper	 that	 introduces	 an	 appealing	
new	variant	of	differential	privacy.	It	elegantly	frames	the	problem	of	private	data	releases	as	a	
hypothesis	testing	problem.	The	impressive	set	of	results	established	in	this	work	sheds	new	light	
into	 the	 fundamental	 problem	 of	 composition.	 It	 demonstrates	 how	 the	 f-	differential	 privacy	
framework	successfully	overcomes	inevitable	drawbacks	of	existing	alternatives	and	establishes	
Gaussian	differential	privacy	(GDP)	at	the	core	of	this	theory.	One	can	expect	the	latter	to	become	
a	dominant	approach	in	this	literature	given	its	appealing	intuitive	hypothesis	testing	interpreta-
tion,	exact	composition	property,	central	limit	role	for	composition	and	computational	tractabil-
ity	for	approximating	privacy	losses.

Arguably	one	of	the	main	practical	benefits	of	the	refined	analysis	of	composition	developed	
in	this	work	is	its	direct	application	in	numerous	machine	learning	tasks	via	a	differentially	pri-
vate	algorithms	in	the	of	spirit	stochastic	gradient	descent	(SGD).	See	Bu	et al.	(2020)	for	interest-
ing	applications	in	deep	learning.	I	shall	focus	my	discussion	on	three	important	questions	than	
one	may	ask	when	considering	such	a	noisy	SGD	algorithm.

1.	 The	 suggested	 algorithm	 clips	 the	 gradient	 at	 some	 prespecified	 level.	 How	 do	 we	 choose	
this	 clipping	 constant	 in	 practice?

2.	 What	can	we	say	about	the	convergence	of	the	noisy	algorithm?
3.	 What	are	the	statistical	properties	of	the	resulting	estimators?

I	attempt	to	provide	some	partial	answers	by	considering	a	parametric	M-	estimation	frame-
work.	Let	�̂	be	defined	as	

	where	 x1, ⋯, xn ∈  ⊂ ℝm	are	 i.i.d.	according	 to	F�0	and	Fn	denotes	 the	empirical	distribution	
function.	Note	that	convexity	of	ρ	typically	guarantees	the	uniqueness	of	�̂	and	that	if	ρ	is	differen-
tiable,	�̂	is	also	implicitly	defined	as	the	solution	of	the	equation	

�̂ = argmin
�∈Θ

n(�) = argmin
�∈Θ

1

n

n∑
i=1

�(xi, �) = argmin
�∈Θ

�Fn
[�(X , �)],

mailto:
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	where	Ψ(x, �) = �

��
�(x, �).	This	class	of	estimators	is	a	strict	generalization	of	the	class	of	regular	

maximum	likelihood	estimators	which	are	recovered	when	n(�)	is	the	log-	likelihood,	that	is	when	
we	take	�(x, �) = − log f�(x).	In	robust	statistics,	M-	estimators	defined	through	a	function	Ψ	that	is	
bounded	in	x ∈ 	are	particularly	appealing.	Indeed,	a	bounded	Ψ	guarantees	that	the	M-	estimator	
has	a	bounded	influence	function	and	therefore	ensures	that	it	is	robust	to	the	presence	of	a	small	
fraction	of	outliers	in	the	data	(Hampel	et al.,	1986;	Huber	&	Ronchetti,	2009).	In	the	context	of	noisy	
SGD	it	is	also	critical	to	have	supx,𝜃‖Ψ(x, 𝜃)‖2 ≤ B < ∞	since	the	bound	B	is	used	in	the	calibration	
of	the	privacy	inducing	noise.	See	lines	6–	7	of	noisySGD.

With	the	above	setting	in	mind,	let	us	try	to	answer	the	first	question.	Note	that	if	we	use	noisy	
SGD	to	compute	a	maximum	likelihood	estimator	we	will	in	fact	be	computing	a	differentially	
private	counterpart	of	the	clipped	likelihood	estimator	

	where	hc(z) = zmin{1, c

‖z‖2 }	is	the	multivariate	Huber	function	(Hampel	et al.,	1986,	p.239).	While	

clipping	guarantees	 robustness	via	a	bounded	 influence	 function,	 the	 resulting	estimators	are	 in	
general	 not	 consistent	 since	 the	 estimating	 equations	 are	 in	 general	 not	 unbiased	 i.e.	
�F�0

[hc
(
∇logf (xi, �0)

)
] ≠ 0.	Hence,	even	though	gradient	clipping	is	a	common	suggestion	in	the	

differential	privacy	literature,	it	is	not	the	most	appealing	from	a	statistical	viewpoint.	A	possible	
solution	is	to	consider	a	diverging	clipping	constant	c,	but	a	natural	simple	alternative	is	to	use	in-
stead	a	consistent	bounded	influence	M-	estimator.	In	the	context	of	normal	linear	regression,	we	
observe	{yi, xi}ni=1	and	obtain	the	clipped	least	squares	estimator

	In	this	particular	case	the	clipped	estimator	happens	to	be	a	consistent	estimator	because	of	the	
symmetric	errors	assumed	by	the	model.	One	could	also	consider	a	differentially	private	analogue	of	
a	Mallows’	type	estimator	

	where	�c(r) =max{ − c, min(r, c)}	is	the	Huber	function.
In	order	to	give	some	insights	into	the	next	two	questions,	I	will	first	consider	an	alternative	

noisy	gradient	descent	(GD)	algorithm	defined	by	the	iterates	

	One	can	give	a	clear	answer	to	questions	2	and	3	for	noisy	GD	based	on	recent	results	of	a	collabo-
rative	work	(Avella-	Medina	et al.,	2021).	They	also	give	an	idea	of	what	might	be	expected	for	noisy	
SGD.	The	following	informal	statement	relates	the	properties	of	the	Kth	iterate	of	noisy	GD	�(K)	to	
those	of	the	M-	estimator	�̂	defined	in	Equation	(1).

(1)
1

n

n∑
i=1

Ψ(xi, �̂) = 0,

�̃:
1

n

n∑
i=1

hc
(
∇logf (xi, �̃)

)
= 0,

�̃�:
1

n

n∑
i=1

hc
(
(yi − x⊤i �̃�)xi

)
= 0.

�𝜃:
1

n

n�
i=1

𝜓c(yi − x⊤i
�𝜃)

xi
‖xi‖2 = 0,

�(k+1) = �(k) − �

�
1

n

n�
i=1

Ψ(xi, �
(k)) +

2sup‖Ψ‖2 ⋅
√
K

n�
Zk

�
, {Zk}

iid
∼N(0, �p).
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Theorem	1	 Assuming	local	strong	convexity,	after	K ≥ C log n	iterations	of	NGD	we	have	

that	�(K)	is	μ-	GDP	and	�(K) − �0 = �̂ − �0 +Op

�√
Kp

�n

�
.We	can	draw	a	few	important	conclusions	

from	this	theorem.	We	see	that	O( log  n)	steps	suffice	in	order	to	guarantee	that	the	iterates	�(K)	
approaches	�̂	up	to	an	error	that	is	proportional	to	the	privacy	inducing	noise	added	to	the	usual	
GD	 step.	 An	 intuitive	 interpretation	 of	 this	 result	 from	 standard	 optimization	 theory	 is	 that,	
under	local	strong	convexity,	GD	requires	K	to	be	of	the	order	O( log  (1/Δ))	if	we	want	to	guar-
antee	the	optimization	error	to	be	‖�(K) − �̂‖2 = O(Δ).	This	means	that	O( log  n)	steps	suffice	if	
we	want	to	make	the	optimization	error	be	of	the	same	order	as	the	privacy	inducing	noise.	The	
theorem	proves	that	this	is	also	the	case	for	noisy	GD.	Importantly,	as	long	as	

√
Kp

�
√
n
→ 0	the	added	

statistical	cost	of	μ-	GDP	is	negligible	in	the	sense	that	�(K) = �̂ + op(1∕
√
n)	and	hence	under	stan-

dard	regularity	conditions	�(K)	is	also	asymptotically	normally	distributed.	In	fact,	if	we	translate	
the	μ-	GDP	guarantee	into	a	(ɛ,	δ)-	DP	guarantee,	we	see	that	the	rates	of	convergence	of	noisy	GD	
match	the	minimax	lower	bound	rates	of	Cai	et al.	(2021)	up	to	

√
logn	factor	as	long	as	we	take	

K = C log n	iterations.	Thus	noisy	GD	achieves	optimal	rates	of	convergence	among	the	class	of	
(ɛ, δ)-	DP	estimators.

Let	me	now	return	to	noisy	SGD	and	conclude	by	pointing	out	some	challenges.	Indeed,	the	
theory	of	noisy	GD	combined	with	standard	SGD	suggest	a	couple	of	possible	statistical	 issues.	
A	first	potential	problem	arises	from	the	well-	known	fact	that	the	standard	SGD	converges	at	a	
slower	rate	than	GD	(Bubeck,	2015).	More	precisely,	under	strong	convexity,	O(logn)	steps	of	GD	
give	the	same	accuracy	as	O(

√
n)	steps	of	GD.	This	is	not	an	issue	in	classical	settings,	but	the	the-

ory	of	noisy	GD	suggests	it	might	be	a	problem	for	noisy	SGD	since	the	number	of	iterations	has	
a	direct	impact	on	the	magnitude	of	the	noise	term.	A	second	important	problem	is	that	a	fixed	
mini-	batch	size	m	also	entails	that	we	have	a	non-	vanishing	noise	term	in	line	7	of	noisySGD.	
Here	again	the	theory	of	noisy	GD	suggests	that	we	might	not	have	consistent	noisy	SGD	estima-
tors	unless	m → ∞	and	the	cost	of	privacy	might	not	negligible	unless	we	also	have	that	m

2

n
→ ∞.		

I	think	that	these	problems	deserve	further	attention	in	future	research.
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We	congratulate	Drs.	Dong,	Roth	and	Su	for	advancing	our	understanding	of	differential	privacy	
from	a	hypothesis-	testing	perspective.	As	more	personal	data	are	collected	for	research,	we	need	
to	mathematically	understand	when	an	adversary	may	be	tempted	to	 identify	 individuals	and	
obtain	sensitive	information	about	them.	This	is	especially	true	when	working	with	patient	data	
in	healthcare,	as	respecting	patient	consent	and	privacy	is	imperative	and	subject	to	strong	legal	
and	regulatory	constraints.	In	addition,	not	all	data	modalities	collected	in	clinical	trials	are	uni-
formly	suitable	for	anonymization	or	de-	identification.	For	example,	only	a	few	genetic	markers	
or	peripheral	 information	present	 in	medical	 images	may	be	sufficient	 to	uniquely	re-	identify	
individuals.	As	a	result,	patient	privacy	requirements	can	severely	limit	our	ability	to	link	data	
across	clinical	studies	and	build	complex	data	sets	to	improve	our	understanding	of	disease	and	
response	to	treatments.

Despite	 the	 progress	 made	 so	 far,	 there	 is	 limited	 work	 on	 privacy-	preserving	 techniques	
with	applications	to	clinical	research.	When	computing	differentially	private	data	summaries	or	
model	parameters	on	clinical	data	sets,	we	trade	data	utility	off	for	privacy	guarantees	through	
randomized	 algorithms	 that	 are	 parameterized	 by	 a	 ‘privacy	 budget’.	 Data	 from	 clinical	 trials	
present	both	unique	challenges	and	opportunities	in	this	context:	for	one,	knowledge	of	random-
ization	by	study	design	may	allow	us	to	suppress	data	with	little	impact	on	the	summary	being	
computed.	For	another,	clinical	trial	data	sets	with	only	hundreds	or	thousands	of	participants	
are	much	smaller	than	other	types	of	data	typically	considered	in	the	context	of	differential	pri-
vacy	(insurance	data,	electronic	health	records,	etc.),	making	it	challenging	to	retain	data	utility	
as	well	as	privacy.

These	 specific	 constraints	 raise	 interesting	 questions	 as	 to	 how	 the	 proposed	 methods	 can	
be	applied	to	clinical	research,	for	example	around	the	management	of	the	differential	privacy	
budget.	As	such,	we	believe	it	would	be	highly	useful	to	study	the	practical	implications	of	µ/f-	DP	
and	ε-	DP	for	small	clinical	data	sets.	For	example,	could	we	address	the	trade-	offs	between	data	
utility	 and	 preserving	 privacy	 in	 the	 framework	 of	 f-	DP	 while	 acknowledging	 the	 customary	
hypothesis-	testing	approaches	in	clinical	research	where	power	is	maximized	while	controlling	
the	Type	I	error	rate	at	a	specified	threshold.	Moreover,	we	believe	it	would	be	interesting	to	study	
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if	there	are	non-	trivial	ways	to	utilize	the	rules	of	composition	in	f-	DP	for	optimizing	complex	
sets	of	private	data	summaries,	or	the	training	process	of	private	generative	models.
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Due	to	the	emerging	concerns	of	individual	confidentiality,	differential	privacy	has	been	a	hot	
topic	in	recent	years.	Most	papers	talk	about	the	applications,	and	this	article	stands	out	by	fo-
cusing	on	the	mathematical	analysis	and	proving	the	asymptotic	bounds.	For	the	readers	who	
are	unfamiliar	with	differential	privacy,	I	recommend	a	shorter	article	(Snoke	&	Bowen,	2020)	as	
a	starting	point	to	learn	about	the	context.

Since	 the	 authors	 used	 subsampling	 to	 amplify	 privacy	 guarantees,	 I	 wonder	 if	 they	 have	
considered	moving	to	fully	synthetic	data	to	preserve	perfect	privacy	for	all	individuals.	In	this	
way,	individuals	cannot	be	identified	from	the	synthetic	data	because	the	data	do	not	contain	real	
people	(Howe	et	al.,	2017;	Jarmin	et	al.,	2014).	Can	the	hypothesis	testing	framework	be	applied	
on	proving	that	the	synthetic	data	have	the	same	key	statistical	properties	as	the	original	data?

Another	question	 I	have	 is	how	Gaussian	differential	privacy	preserves	data	usability.	The	
paper	discussed	the	trade-	off	in	terms	of	Type	I	and	Type	II	errors	from	the	attacker's	perspec-
tive,	so	I	am	curious	about	the	trade-	off	between	privacy	guarantees	and	data	usability,	that	is	

1Disclaimer:	The	opinions	and	views	expressed	here	are	those	of	the	author	and	do	not	necessarily	state	or	reflect	those	
of	Microsoft.	
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the	privacy	budget.	Researchers	have	expressed	concerns	about	the	accuracy	of	Census	public	
release	data,	due	to	the	implementation	of	differential	privacy	and	disclosure	avoidance	methods	
(Hauer	&	Santos-	Lozada,	2021;	Ruggles	et	al.,	2019).

Last	but	not	least,	can	the	proposed	Gaussian	Differential	Privacy	framework	be	applied	to	
COVID-	19	contact	tracing	data	(Cho	et	al.,	2020)	in	the	future?	Do	the	authors	anticipate	any	
major	challenges	in	the	implementation?
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The	remarkable	new	contribution	is	the	usage	of	trade-	off	functions	between	error	types	I	and	
II,	which	leads	to	the	generalization	of	differential	privacy.	It	is	intuitively	well	visualized	by	a	
kind	of	inverse	receiver	operating	characteristic.	Via	the	central	limit	theorem	(Theorems	4),	it	is	
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shown	that	a	tensor	product	of	symmetric	trade-	off	functions	with	finite	first	to	third	moments	
is	bounded	by	a	Gaussian	trade-	off	function.	The	proofs	in	section	D	incorporate	the	classical	
Berry–	Esseen	theorem	as	theorem	D.4.

Shortly	in	section	3.2,	the	topic	of	requirement	of	a	finite	third	moment	is	touched,	which	is	
crucial	for	the	Berry–	Esseen	central	limit	theorems.	For	transferring	the	results	of	the	DP	central	
limit	theorem	(Theorems	4	and	5)	to	(ε,	δ)-	DP,	there	the	question	is	taken	up	again	to	prove	con-
vergence	to	a	Gaussian	trade-	off	function	in	section	3.3.

In	literature,	some	generalizations	of	Berry–	Esseen	exist,	for	example	by	Petrov	(1975),	where	
Theorem	5	states	in	a	simplified	form	the	following:

Let	Xi,…,Xn	be	random	variables	with	mean	zero	and	variance	1.	Let	Fn (x) = P(n−
1
2
∑n

i=1 < x)	.	
Let	g()	be	a	non-	negative,	non-	decreasing	and	even	function	in	the	interval	x	>	0	such	that	also	 x

g(x)
	is	

non-	decreasing	in	the	interval	x	>	0.	For	E[X2
1
g(X1)] <∞	it	holds	that

for	some	absolute	positive	constant	A.	Results	might	also	be	extended	to	different	variances	as	shown	
in	Petrov	(1975)	and	also	non-	zero	means	as	shown	in	DasGupta	(2008).

Using	such	a	third-	moment-	free	central	limit	theorem,	the	(ε,	δ)-	DP	trade-	off	function	could	
also	be	covered	by	the	central	limit	theorem	as	well	as	a	potentially	larger	scope	of	trade-	off	
functions.	The	proofs	do	not	require	a	specific	value	for	the	constant,	such	that	a	consideration	
of	this	Berry–	Esseen	extension	might	be	an	option,	whereas	handling	of	g()	might	be	a	limiting	
issue.
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We	congratulate	Professors	Dong,	Roth	and	Su	on	their	compelling	work	on	Gaussian Differential 
Privacy.

In	official	statistics,	the	p%-	rule	(Hundepoel	et al.,	2012)	is	widely	used	to	protect	tabular	data.	
In	recent	work	(Hut	et al.,	2020)	we	adapted	this	concept	to	thematic	maps,	for	example,	of	en-
ergy	consumption	per	company.	Usually	such	maps	are	drawn	directly	from	an	underlying	table	
that	is	protected	from	disclosure.	The	resulting	colour-	coded	map,	however,	is,	by	construction,	
discretised	in	regions	defined	by	the	cells	in	the	table.	These	geographic	regions	are	usually	large,	
corresponding,	for	instance,	to	municipalities.	The	resulting	protection	is	very	conservative,	lead-
ing	to	a	map	with	reduced	utility.	Therefore,	there	is	a	need	for	smooth	thematic	maps.

One	might	use	the	Nadaraya–	Watson	kernel	weighted	average.	This	procedure,	however,	is	
not	necessarily	safe.	Indeed,	suppose	that	an	attacker	is	able	to	read	off	the	plotted,	smoothed,	
values	of	the	variables	of	interest	at	all	measurement	locations.	Then	their	original	values	satisfy	
a	linear	system	which	in	many	cases	(including	that	of	a	Gaussian	kernel)	can	be	solved	exactly	
if	the	measurement	locations	are	distinct.

To	protect	sensitive	information	we	propose	to	add	correlated	Gaussian	noise	E	with	variance	
τ	and	map	

	Here	the	gi > 0	are	the	values	of	the	variable	at	distinct	locations	ri	in	a	planar	region	D,	κ	is	the	
Gaussian	kernel	and	h > 0	the	bandwidth	that	determines	the	amount	of	smoothing.

The	counterpart	of	the	p%-	rule	is	as	follows.	Let	0 ≤ α < 1.	Then	a	map	is	unsafe	if	

∑
i=1,⋯,Ngi�((r − ri)∕h) + E(r)∑

i=1,⋯,N�((r − ri)∕h)
, r ∈ D.

max
1=1,⋯,N

P

(|||||
�gi − gi
gi

|||||
<

p

100

)
> 𝛼.
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In	words,	a	map	is	safe	when	small	relative	errors	happen	with	small	probability.	We	proved	that	if	

	where	Kh = (�((ri−rj)∕h))i,j=1,⋯N,	the	resulting	thematic	map	is	safe.
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The	authors	are	to	be	congratulated	on	a	valuable	and	thought-	provoking	contribution	motivat-
ing	this	new	framework	for	private	data	analysis,	the	f-	differential	privacy.	A	key	aspect	is	the	use	
of	trade-	off	functions	of	hypothesis	testing	as	a	measure	of	indistinguishability	of	two	or	group	
neighbouring	data	sets.
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I	would	 like	 to	 frame	 this	contribution	within	 the	context	of	big	data	 together	with	data	
mining	and	data	science.	As	the	authors	point	out,	an	increasing	and	unprecedented	wealth	
of	methods	concern	individual	data	recorded	from	personal	devices	or	even	private	or	public	
resources.	 In	 this	 large-	scale	 and	 big	 data	 context,	 privacy	 in	 terms	 of	 anonymous	 personal	
information	is	key	for	any	legal	and	serious	data	analysis.	Modern	data	collection	techniques	
allow	tracking	objects	(persons)	continuously.	This	means	that	we	do	not	only	know	the	cur-
rent	location	of	a	moving	object,	but	we	also	track	the	objects	over	time.	A	set	of	some	tracks	
from	 different	 moving	 objects	 may	 be	 considered	 a	 trajectory	 pattern.	 Indeed,	 studying	 the	
behaviour	of	moving	objects	over	 time	and	 their	 interaction,	either	between	objects	or	with	
environment,	plays	a	crucial	role	in	understanding	how	they	use	space	and	more	importantly	
how	they	interact	with	each	other.	In	this	context,	a	snapshot	of	a	trajectory	pattern	might	be	
seen	as	a	spatial	point	pattern.

I	pose	the	following	two	cases.	One	is	a	data	set	where	the	individual	events	are	themselves	
trajectories	(functions)	moving	within	a	city.	We	need	algorithms	for	privacy	guarantee	and	to	get	
groups	of	(trajectory)	data	anonymised.	In	a	related	context,	assume	the	events	are	exact	space–	
time	coordinates	of	infected	people	from	an	infectious	disease.	So	we	have	a	spatiotemporal	point	
pattern	and	we	need	to	test	if	the	ratio	of	the	first-	order	intensity	of	the	infected	group	against	
that	of	the	control	group	behaves	in	a	particular	way.	In	other	words,	we	need	to	test	if	groups	of	
space–	time	events	are	distinguishable	from	other	events.	These	two	problems	deal	with	data	in	
space–	time,	and	pose	problems	on	privacy	over	space–	time	locations.	I	wonder	if	GDP	applies	
over	this	spatial	context.	Also,	a	natural	question	is	how	f-	DP	or	GDP	can	be	used	in	contexts	
where	type	I	and	II	errors	are	only	approximated	by	simulations	-	because	the	probability	dis-
tribution	under	the	null	or	alternative	hypothesis	is	usually	unknown,	as	often	happens	in	the	
spatiotemporal	context.

How to cite this article:	Mateu,	J.	Jorge	Mateu’s	contribution	to	the	Discussion	of	
‘Gaussian	Differential	Privacy’	by	Dong	et al.	J R Stat Soc Series B.	2022;	84,	3–	54.	https://doi.
org/10.1111/rssb.12461

https://doi.org/10.1111/rssb.12461
https://doi.org/10.1111/rssb.12461


   | 49DISCUSSION	CONTRIBUTION

DOI:	10.1111/rssb.12462		

Priyantha Wijayatunga’s contribution to the 
Discussion of ‘Gaussian Differential Privacy’ by 
Dong et al.

Priyantha Wijayatunga

Department	of	Statistics,	Umeå	University,	Umeå,	Sweden

Correspondence
Priyantha	Wijayatunga,	Department	of	Statistics,	Umeå	University,	Umeå,	Sweden.
Email:	priyantha.wijayatunga@umu.se.

In	privacy	preserving,	for	example	using	a	differential	privacy	framework,	when	a	statistical	op-
eration	is	done	on	a	database,	then	it	is	done	so	that	its	results	are	not	overly	dependent	on	any	
data	record	in	the	database.	In	this	sense,	one	may	think	that	this	is	all	about	avoiding,	for	ex-
ample	outliers,	when	the	desired	statistical	results	are	generated.	But	on	the	other	hand,	utility	
of	such	a	result	is	questionable.	When	an	average	of	a	certain	measure	is	requested,	giving	the	
median	or	an	average	calculated	from	implementation	of	a	suitable	resampling	procedure	may	
preserve	the	privacy	of	individual	data.	Such	methods	may	be	simple	to	implement	and	may	have	
an	appreciable	utility.	Recently	in	Santos-	Lozada	et	al.	(2020)	using	US	census	data,	the	authors	
show	that	implementation	of	the	differential	privacy	will	produce	dramatic	changes	in	popula-
tion	counts	for	racial/ethnic	minorities	in	small	areas	and	less	urban	settings,	significantly	alter-
ing	knowledge	about	health	disparities	in	mortality.	It	is	also	important	to	note	that,	according	to	
the	Fundamental Law of Information Recovery;	‘overly	accurate	answers	to	too	many	questions	
(on	statistics)	will	destroy	privacy	(of	individual	data)	in	a	spectacular	way’.

The	paper	tries	to	use	frequentist	statistical	hypothesis	testing	framework	for	defining	their	
differential	privacy	framework.	However,	as	many	of	us	are	aware	the	hypothesis	testing	is	un-
dergoing	immense	criticism,	especially	within	the	applied	statistical	community,	for	example	so-	
called	p-	value	problems.	It	may	be	that	such	problems	and	oppositions	may	appear	in	any	privacy	
framework	that	is	based	on	the	frequentist	statistical	hypothesis	testing	methodology.	Therefore,	
ideally	the	authors	should	touch	upon	such	problems,	especially	to	attract	applied	researchers	
(in	the	sense	of	the	discipline	of	statistics)	such	as	computer	scientists,	social	scientists,	etc.,	to	
their	approach.	In	fact,	the	authors	emphasize	the	importance	of	the	use	of	the	Neyman–	Pearson	
hypothesis	testing	framework	for	interpreting	differential	privacy	over	other	methods.	According	
to	original	thesis	of	R.	A.	Fisher	(1890–	1962),	the	meaning	of,	for	example,	p-	value < 0.05	is	that	
the	respective	experiment	should	be	repeated	a	 few	times.	Such	a	practice	should	be	handled	

This	is	an	open	access	article	under	the	terms	of	the	Creat	ive	Commo	ns	Attri	butio	n-	NonCo	mmerc	ial-	NoDerivs	License,	which	permits	
use	and	distribution	in	any	medium,	provided	the	original	work	is	properly	cited,	the	use	is	non-	commercial	and	no	modifications	or	
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by	authors'	composition	results.	Apart	from	above	issues,	it	seems	that	some	mathematical	ex-
pressions	should	accompany	with	some	verbal	expressions	too,	for	example	the	inequality	in	the	
Definition 1	is	valid	for	a	given	(fixed)	(S,	S')	pair.	Therefore,	it	is	helpful	to	write	ℙ{M(S)	∈	E	|	S}	
rather	than	writing	ℙ{M(S)	∈	E}	and	indicate	how	strong	the	conditional	(in)dependence	of	M(S)	
on	S'	given	S.	Any	other	confusions	should	be	eliminated.
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We	warmly	 thank	Editor	Paul	Smith	 for	 selecting	our	paper	 for	discussion	and	are	extremely	
grateful	to	all	the	discussants	for	taking	their	valuable	time	to	provide	engaging	and	stimulating	
feedback	on	our	work.	These	insights	situate	our	work	in	context	and	provide	promising	direc-
tions	for	future	research.	We	are	excited	to	see	that	thoughts	about	theoretical	complements	and	
new	applications	are	already	emerging.

A	general	view,	shared	by	all	discussants,	is	that	privacy	is	a	first-	order	concern	in	many	data	
science	 problems.	 We	 are	 very	 pleased	 to	 learn	 that	 our	 statistics	 community	 welcomes	 new	
foundational	development	and	methodological	contributions	that	allow	for	privacy	protections	
in	statistical	data	analysis.
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In	 this	 rejoinder,	 we	 aim	 to	 address	 two	 broad	 issues	 that	 cover	 most	 comments	 made	 in	
the	 discussion.	 First,	 we	 discuss	 some	 theoretical	 aspects	 of	 our	 work	 and	 comment	 on	 how	
this	work	might	impact	the	theoretical	foundation	of	privacy-	preserving	data	analysis.	Taking	a	
practical	viewpoint,	we	next	discuss	how	f-	differential	privacy	(f-	DP)	and	Gaussian	differential	
privacy	(GDP)	can	make	a	difference	in	a	range	of	applications.

1 |  THEORETICAL ASPECTS OF f -  DP

As	echoed	by	many	discussants,	the	formalization	of	f-	DP	in	our	paper	(Dong	et	al.,	2021a)	starts	
from	a	decision-	theoretic	interpretation	of	a	‘differential’	privacy	attack,	which	originates	from	
the	work	of	Wasserman	and	Zhou	(2010).	The	binary	nature	of	the	decision-	theoretic	problems	
renders	the	classical	theory	of	hypothesis	testing	a	basic	tool.	Specifically,	we	use	the	trade-	off	
between	type	I	and	type	II	errors	of	the	hypothesis	testing	problem	as	our	privacy	measure.	In	
response	to	a	question	raised	by	Dr.	Jorge	Mateu,	we	remark	that	this	trade-	off	is	concerned	with	
a	thought	experiment	in	which	someone	is	trying	to	determine	if	an	individual's	data	is	in	the	
data	set	or	not,	rather	than	a	hypothesis	test	that	is	actually	conducted.	It	can	therefore	always	be	
reasoned	about	analytically/formally,	without	needing	simulation,	even	if	the	algorithms	them-
selves	are	complex	or	simulation	based.

This	treatment	of	privacy	cost	in	f-	DP	comes	with	several	technical	properties	that	can	facilitate	
the	development	of	better	differentially	private	algorithms.	As	highlighted	by	Dr.	Borja	Balle,	f-	DP	
gives	tight	and	analytically	tractable	formulas	for	composition.	This	appealing	feature	arises	from	
applying	the	central	limit	theorem	to	the	privacy	loss	random	variables,	thereby	making	GDP	a	
canonical	single-	parameter	family	of	privacy	definitions	within	the	f-	DP	class.	While	we	did	not	
attempt	to	push	hard	on	weakening	assumptions	for	the	privacy	central	limit	theorems,	there	are	
several	possible	extensions.	For	example,	one	may	be	able	to	identify	a	necessary	and	sufficient	
condition	for	the	privacy	central	limit	theorem	to	hold,	just	like	the	Lindeberg–	Feller	condition	
for	the	usual	central	limit	theorems.	Another	possibility	is	to	sharpen	the	central	limit	theorem	by	
leveraging	a	refined	analysis	of	the	privacy	loss	random	variables	(Zheng	et	al.,	2020).	More	spe-
cifically,	Dr.	Sebastian	Dietz	suggested	a	very	interesting	direction	for	improving	the	composition	
formulas	by	making	use	of	a	third-	moment-	free	central	limit	theorem	(see,	for	example,	DasGupta	
(2008)).	A	successful	investigation	in	this	direction	might	extend	the	applicability	of	the	compo-
sition	formulas	to	(ε,	δ)-	DP	and	others.	More	broadly,	it	would	also	be	interesting	to	explore	cen-
tral	limit	theorem	phenomena	of	privacy	beyond	composition.	For	example,	Dong	et	al.	(2021b)	
recently	showed	that	a	related	central	limit	theorem	occurs	in	high-	dimensional	query	answering	
and	yet	privacy	cost	is	best	described	in	the	framework	of	f-	DP.	We	see	all	these	as	interesting	fu-
ture	directions	for	broadening	the	scope	of	the	hypothesis	testing	viewpoint	on	differential	privacy.

In	addition	to	composition,	subsampling	is	another	 important	primitive	that	 is	 involved	in	
many	algorithm	designs.	As	pointed	out	by	Dr.	Borja	Balle,	while	divergence-	based	privacy	defi-
nitions	face	technical	difficulties	in	describing	privacy	amplification	by	subsampling,	f-	DP	gives	
a	relatively	concise	and	coherent	expression	for	understanding	how	privacy	is	amplified	using	
this	primitive.	This	also	gives	a	sharper	privacy	analysis	of	subsampling	than	can	be	obtained	by	
directly	using	(ε,	δ)-	DP.	An	interesting	observation	made	by	Dr.	Borja	Balle	is	that	the	significant	
gap	between	the	two	frameworks	seems	surprising,	and	warrants	further	investigation.	It	is	also	
worth	developing	similar	privacy	analyses	for	the	various	flavors	of	subsampling	schemes	used	
in	training	deep	learning	models	(not	all	of	which	involve	independent	sampling	across	rounds).
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2 |  APPLICATIONS OF f -  DP

Our	main	hope	for	f-	DP	is	to	see	as	many	applications	as	possible	to	improving	the	privacy	analy-
ses	of	the	diverse	algorithms	used	in	a	variety	of	data	science	problems.	Encouragingly,	we	found	
many	such	possibilities	in	the	discussants’	contributions	that	either	tackle	important	problems	
or	show	great	promise.

Understanding	the	trade-	off	between	privacy	and	utility	for	various	statistical	and	computa-
tional	tasks	is	the	central	object	of	study	in	the	differentially	privacy	literature.	The	main	point	
of	f-	DP	and	GDP	is	to	make	it	possible	to	capture	this	fundamental	trade-	off	more	precisely.	As	
a	 result,	 the	 f-	DP	 framework	allows	us	 to	obtain	better	 trade-	offs	between	privacy	guarantees	
and	data	usability.	This	trade-	off	is	different	in	different	applications,	and	requires	analyses	on	a	
case	by	case	basis.	We	emphasize,	as	pointed	out	by	several	of	the	discussants	that	privacy	pro-
tection	does	inevitably	come	with	utility	loss.	Indeed,	this	is	a	consequence	of	the	‘fundamental	
law	of	information	recovery’,	which	applies	not	just	to	differential	privacy	but	to	any	method	of	
releasing	data.	So	while	it	is	true	that	differential	privacy	can	harm	utility	(especially	for	small	
data	sets),	this	is	not	an	artefact	of	differential	privacy,	but	an	actual,	fundamental	trade-	off	that	
we	have	to	grapple	with	as	a	society.	We	can	choose	to	get	exact	statistics	about	our	data,	but	
we	should	understand	that	this	means	giving	up	on	privacy.	Differential	privacy	takes	no	stand	
on	how	we	should	mediate	this	fundamental	trade-	off:	rather	it	provides	a	precise	language	in	
which	to	talk	about	it.

2.1 | f- DP for stochastic optimization

To	appreciate	how	sharply	this	trade-	off	can	be	characterized	using	a	given	privacy	definition,	
perhaps	the	best	benchmark	is	stochastic	gradient	descent	(SGD),	the	basic	foundation	for	many	
machine	learning	algorithms.	Owing	to	its	effectiveness	in	handling	composition	and	subsam-
pling,	 f-	DP	 gives	 a	 tighter	 privacy	 analysis	 of	 SGD	 than	 the	 moments	 accountant	 technique	
(Abadi	et	al.,	2016),	which	further	feeds	back	into	improved	test	accuracy	of	trained	deep	learn-
ing	models	at	fixed	privacy	guarantees	(Bu	et	al.,	2020).	We	are	delighted	that	Dr.	Borja	Balle	
wrote	‘I	would	encourage	practitioners	to	take	note	of	this	and	start	using	Gaussian	DP	account-
ing	in	their	DP-	SGD	implementations’.

Moving	forward,	Dr.	Marco	Avella-	Medina	raised	several	interesting	and	important	questions	re-
garding	private	SGD	with	f-	DP	guarantees.	Although	gradient	clipping	is	a	necessary	step	in	private	
SGD	that	ensures	bounded	sensitivity	to	any	single	data	point,	this	step	can	lead	to	inconsistency	for	
some	problems.	To	go	around	this	difficulty,	Avella-	Medina	suggested	using	a	consistent	bounded	
influence	M-	estimator	from	robust	statistics,	which	we	believe	is	a	promising	approach	worthy	of	
future	research	effort.	Moreover,	we	are	glad	to	see	that	Avella-	Medina	et	al.	(2021)	introduced	a	
kind	of	noisy	gradient	descent	and	analysed	its	Gaussian	differential	privacy	properties.	This	opens	
an	exciting	research	avenue	to	understand	when	noisy	gradient	descent	outperforms	SGD.

2.2 | Other applications

Differential	privacy	has	applications	beyond	machine	learning.	A	promising	application	area—	due	
to	strict	privacy	regulation—	is	in	the	analysis	and	sharing	of	medical	data.	A	challenge	in	medical	
applications	is	that	the	size	of	the	relevant	data	sets	is	often	relatively	small.	The	improved	trade-	off	
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between	privacy	and	utility	is	especially	important	in	the	challenging	small	data	regime.	As	noted	
by	Drs.	Peter	Krusche	and	Frank	Bretz,	there	are	obstacles	to	combining	data	across	hospitals—	for	
which	we	think	differential	privacy	might	be	able	to	help.	Noisy	access	to	a	large	data	set	might	be	
better—	even	from	the	perspective	of	utility—	than	exact	access	to	only	a	small	local	data	set.	When	
applying	privacy	protections	to	small	data,	it	is	especially	important	not	be	as	tight	as	possible	in	
accounting	for	privacy	loss,	which	is	one	of	the	main	benefits	of	the	f-	DP	framework.

Dr.	 Jorge	Mateu	brought	up	privacy	 issues	 that	arise	when	analysing	 trajectory	data.	 In	
principle,	f-	DP	and	GDP	can	be	applied	to	any	kind	of	data,	such	as	trajectory	data.	It	would	
make	sense,	 for	example	 to	 think	about	 the	question	of	releasing	statistics	about	 trajectory	
data	or	a	synthetic	data	set	consisting	of	trajectories	that	maintain	consistency	with	the	real	
data	with	respect	to	various	statistics	of	interest,	so	long	as	those	statistics	have	low	sensitivity	
and	vary	only	mildly	with	the	data	of	 individuals.	These	types	of	problems	deserve	 further	
study.	Of	course,	providing	useful	analyses	of	a	single	individual's	trajectory	is	by	design	pre-
vented	by	technologies	that	aim	to	preserve	individual	privacy.	A	related	question,	asked	by	
Dr.	 Christine	 Chai,	 was	 whether	 the	 f-	DP	 framework	 can	 be	 applied	 to	 COVID-	19	 contact	
tracing	data.	Differential	privacy	((ε,	δ)-	DP,	f-	DP,	or	any	related	variant)	is	not	directly	applica-
ble	to	what	is	most	commonly	known	as	contact	tracing—	letting	contacts	know	that	someone	
with	COVID-	19	has	been	near	them—	since	by	design,	this	is	highly	sensitive	to	a	single	data	
point.	However,	GDP	(as	well	as	other	differential	privacy	variants)	can	be	used	to	improve	
population	level	statistics	related	to	contact	tracing,	such	as	how	crowded	grocery	stores	are	
by	time	and	mobility	data,	or	even	what	fraction	of	visitors	to	a	grocery	store	in	a	given	day	
have	had	potential	COVID-	19	exposure.	More	generally,	we	believe	that	f-	DP	has	many	more	
connections	to	various	aspects	of	data	science.

Finally,	we	remark	that	there	are	many	heuristic	approaches	to	privacy	that	do	not	come	with	
the	guarantees	of	differential	privacy.	There	is	a	vast	literature	of	pros	and	cons	among	these	ap-
proaches,	which	is	beyond	the	scope	of	this	paper—	but	in	general,	‘syntactic’	approaches	do	not	
stand	up	to	attack	by	a	determined	adversary.	In	particular,	synthetic	data	is	known	to	be	neither	
necessary	nor	sufficient	for	privacy—	but	also	not	incompatible	with	differential	privacy.	For	exam-
ple,	there	is	a	large	literature	on	generating	differentially	private	synthetic	data	(see,	e.g.,	Blum	et	al.	
(2013);	Gaboardi	et	al.	(2014);	Vietri	et	al.	(2020);	Aydore	et	al.	(2021);	Jordon	et	al.	(2018);	Beaulieu-	
Jones	et	al.	(2019)),	most	of	which	we	believe	can	be	improved	by	f-	DP	style	analyses.

REFERENCES
Abadi,	M.,	Chu,	A.,	Goodfellow,	I.,	McMahan,	H.B.,	Mironov,	I.,	Talwar,	K.	et	al.	(2016)	Deep	learning	with	differ-

ential	privacy.	In	Proceedings of the 2016 ACM SIGSAC conference on computer and communications security,	
pages	308–	318.

Avella-	Medina,	M.,	Bradshaw,	C.	&	Loh,	P.-	L.	(2021)	Differentially	private	inference	via	noisy	optimization.	arXiv 
preprint arXiv:2103.11003.

Aydore,	S.,	Brown,	W.,	Kearns,	M.,	Kenthapadi,	K.,	Melis,	L.,	Roth,	A.	&	Siva,	A.	(2021)	Differentially	private	query	
release	through	adaptive	projection.	arXiv preprint arXiv:2103.06641.

Beaulieu-	Jones,	B.K.,	Wu,	Z.S.,	Williams,	C.,	Lee,	R.,	Bhavnani,	S.P.,	Byrd,	 J.B.	et	al.	 (2019)	Privacy-	preserving	
generative	 deep	 neural	 networks	 support	 clinical	 data	 sharing.	 Circulation: Cardiovascular Quality and 
Outcomes,	12(7):e005122.

Blum,	A.,	Ligett,	K.	&	Roth,	A.	(2013)	A	learning	theory	approach	to	noninteractive	database	privacy.	Journal of 
the ACM (JACM),	60(2),	1–	25.

Bu,	 Z.,	 Dong,	 J.,	 Long,	 Q.	 &	Weijie,	 S.	 (2020)	 Deep	 learning	 with	 Gaussian	 differential	 privacy.	 Harvard Data 
Science Review.	https://doi.org/10.1162/99608	f92.cfc5dd25

DasGupta,	A.	(2008)	Asymptotic theory of statistics and probability.	Springer	Science	&	Business	Media.

https://doi.org/10.1162/99608f92.cfc5dd25


54 |   DISCUSSION	CONTRIBUTION

Dong,	J.,	Roth,	A.	&	Su,	W.J.	(2021a)	Gaussian	differential	privacy.	Journal of the Royal Statistical Society: Series B 
(Statistical Methodology),	1–	35.	https://doi.org/10.1111/rssb.12454

Dong,	J.,	Su,	W.J.	&	Zhang,	L.	(2021b)	A	central	limit	theorem	for	differentially	private	query	answering.	arXiv 
preprint arXiv:2103.xxxxx.

Gaboardi,	M.,	Arias,	E.J.G.,	Hsu,	J.,	Roth,	A.	&	Wu,	Z.S.	(2014)	Dual	query:	Practical	private	query	release	for	high	
dimensional	data.	In	International Conference on Machine Learning,	pages	1170–	1178.	PMLR.

Jordon,	J.,	Yoon,	J.	&	Van	Der	Schaar,	M.	(2018)	Pate-	gan:	Generating	synthetic	data	with	differential	privacy	guar-
antees.	In	International Conference on Learning Representations.

Vietri,	G.,	Tian,	G.,	Bun,	M.,	Steinke,	T.	&	Wu,	S.	(2020)	New	oracle-	efficient	algorithms	for	private	synthetic	data	
release.	In	International Conference on Machine Learning,	pages	9765–	9774.	PMLR.

Wasserman,	L.	&	Zhou,	S.	(2010)	A	statistical	framework	for	differential	privacy.	Journal of the American Statistical 
Association,	105(489),	375–	389.

Zheng,	Q.,	Dong,	J.,	Long,	Q.	&	Su,	W.J.	(2020)	Sharp	composition	bounds	for	Gaussian	differential	privacy	via	
Edgeworth	expansion.	In	International Conference on Machine Learning,	pages	11420–	11435.

How to cite this article:	Dong	J,	Roth	A,	Su	WJ.	Authors'	reply	to	the	Discussion	of	
‘Gaussian	Differential	Privacy’	by	Dong	et al.	J R Stat Soc Series B.	2022;	84:	3–	54.	https://doi.
org/10.1111/rssb.12463

https://doi.org/10.1111/rssb.12454
https://doi.org/10.1111/rssb.12463
https://doi.org/10.1111/rssb.12463

